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The pentalogy (Mallios, A. and Raptis, I. (2001). International Journal of Theoretical
Physics 40, 1885; Mallios, A. and Raptis, I. (2002). International Journal of Theo-
retical Physics 41, 1857; Mallios, A. and Raptis, I. (2003). International Journal of
Theoretical Physics 42, 1479; Mallios, A. and Raptis, I. (2004). ‘paper-book’/research
monograph); I. Raptis (2005). International Journal of Theoretical Physics (to appear)
is brought to its categorical climax by organizing the curved finitary spacetime sheaves
of quantum causal sets involved therein, on which a finitary (:locally finite), singularity-
free, background manifold independent and geometrically prequantized version of the
gravitational vacuum Einstein field equations were seen to hold, into a topos structure
DTf cq . We show that the category of finitary differential triads DTf cq is a finitary in-
stance of an elementary topos proper in the original sense due to Lawvere and Tierney.
We present in the light of Abstract Differential Geometry (ADG) a Grothendieck-type of
generalization of Sorkin’s finitary substitutes of continuous spacetime manifold topolo-
gies, the latter’s topological refinement inverse systems of locally finite coverings and
their associated coarse graining sieves, the upshot being that DTf cq is also a finitary ex-
ample of a Grothendieck topos. In the process, we discover that the subobject classifier
�f cq of DTf cq is a Heyting algebra type of object, thus we infer that the internal logic
of our finitary topos is intuitionistic, as expected. We also introduce the new notion of
‘finitary differential geometric morphism’ which, as befits ADG, gives a differential
geometric slant to Sorkin’s purely topological acts of refinement (:coarse graining).
Based on finitary differential geometric morphisms regarded as natural transformations
of the relevant sheaf categories, we observe that the functorial ADG-theoretic version of
the principle of general covariance of General Relativity is preserved under topological
refinement. The paper closes with a thorough discussion of four future routes we could
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take in order to further develop our topos-theoretic perspective on ADG-gravity along
certain categorical trends in current quantum gravity research.

KEY WORDS: quantum gravity; causal sets; quantum logic; differential incidence
algebras of locally finite partially ordered sets; abstract differential geometry; sheaf
theory; category theory; topos theory.
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1. PROLOGUE CUM PHYSICAL MOTIVATION: THE PAST
AND THE PRESENT

In the past A A decade or so, we have witnessed vigorous activity in various ap-
plications of categorical—in particular, (pre)sheaf and topos-theoretic (MacLane
and Moerdijk, 1992)—ideas to Quantum Theory (QT) and Quantum Gravity (QG).

With respect to QT proper, topos theory appears to be a suitable and elegant
framework in which to express the non-objective, non-classical (i.e., non-Boolean),
so-called ‘neo-realist’ (i.e., intuitionistic), and contextual underpinnings of the
logic of (non-relativistic) Quantum Mechanics (QM), as manifested for example
by the Kochen-Specker theorem in standard quantum logic (Butterfield and Isham,
1998, 1999; Butterfield et al., 2000; Butterfield and Isham, 2000; Rawling and
Selesnick, 2000). Recently, Isham et al.’s topos perspective on the Kochen-Specker
theorem and the Boolean algebra-localized (:contextualized) logic of QT has
triggered research on applying category-theoretic ideas to the ‘problem’ of non-
trivial localization properties of quantum observables (Zafiris, 2001). Topos theory
has also been used to reveal the intuitionistic colors of the logic underlying the
‘non-instrumentalist,’ non-Copenhagean, ‘quantum state collapse-free’ consistent
histories approach to QM (Isham, 1997).

At the same time, topos theory has also been applied to General Relativity
(GR), especially by the Siberian school of ‘toposophers’ (Guts, 1991, 1995a,b;
Guts and Demidov, 1993; Guts and Grinkevich, 1996; Grinkevich, 1996). Empha-
sis here is placed on using the intuitionistic-type of internal logic of a so-called ‘for-
mal smooth topos,’ which is assumed to replace the (category of finite-dimensional)
smooth spacetime manifold(s) of GR, in order to define a new kind of differen-
tial geometry more general than the Classical (i.e., from a logical standpoint,
Boolean topos Set-based) Differential Geometry (CDG) of finite-dimensional dif-
ferential (:C∞-smooth) manifolds. The tacit assumption here is that the standard
kinematical structure of GR—the background pseudo-Riemannian smooth space-
time manifold—is basically (i.e., when stripped of its topological, differential and
smooth Lorentzian metric structures) a classical point-set continuum living in the
topos Set of ‘constant’ sets, with its ‘innate’ Boolean (:classical) logic (Goldblatt,
1984; MacLane and Moerdijk, 1992). This new ‘intuitionistic differential calcu-
lus’ pertains to the celebrated Synthetic Differential Geometry (SDG) of Kock and
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Lawvere (Kock, 1981; Lavendhomme, 1996), in terms of which the differential
equations of gravity (:Einstein equations) are then formulated in a ‘formal smooth
manifold.’ A byproduct of this perspective on gravity is that the causal structure
(:‘causal topology’) of the pointed spacetime continuum of GR is also revised,
being replaced by an axiomatic scheme of ‘pointless regions’ and coverings for
them recalling Grothendieck’s pioneering work on generalized topological spaces
called sites and their associated sheaf categories (:topoi), which culminated in the
study of new, abstract (sheaf) cohomology theories in modern algebraic geometry
(MacLane and Moerdijk, 1992).

Arguably however, the ultimate challenge for theoretical physics research in
the new millennium is to arrive at a conceptually sound and calculationally sensible
(i.e., finite) QG—the traditionally supposed (and expected!) marriage of QT with
GR. Here too, category, (pre)sheaf and topos theory has been anticipated to play
a central role for many different reasons, due to various different motivations, and
with different aims in mind, depending on the approach to QG that one favors
(Crane, 1995; Trifonov, 1995; Butterfield and Isham, 2000; Markopoulou, 2000;
Isham, 2003a; Raptis, 2001c; Isham, 2003b, 2004a,b, 2005; Kato, 2004, 2005;
Raptis, 2001a,c, 2003).

Akin to the present work is the recent paper of Christensen and Crane on so-
called ‘causal sites’ (causites) (Christensen and Crane, 2004). Like the Novosibirsk
endeavors in classical GR mentioned above, this is an axiomatic looking scheme
based on Grothendieck-type of 2-categories (:2-sites) in which the topological and
causal structure of spacetime are intimately entwined and, when endowed with
some suitable finiteness conditions, appear to be well prepared for quantization
using combinatory-topological state-sum models coming from Relativistic Spin
Networks and Topological Quantum Field Theory (Barrett and Crane, 1997).
Ultimately, the theory aspires to lead to a finite theory of quantum spacetime
geometry and QGR in a point-free 2-topos theoretic setting.

In the present paper too, we extend by topos-theoretic means previous work on
applying Mallios’ purely algebraic (:sheaf-theoretic) and background differential
manifold independent Abstract Differential Geometry (ADG) (Mallios, 1998a,b,
2005b) towards formulating a finitary (:locally finite), causal and quantal, as
well as singularities-cum-infinities free, version of Lorentzian (vacuum) Einstein
gravity (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2005; Mallios and Raptis,
2004). This extension is accomplished by organizing the curved finitary spacetime
sheaves (finsheaves) of quantum causal sets (qausets) involved therein, on which
a finitary, singularities and infinities-free, background manifold independent and
geometrically (pre)quantized version of the gravitational (vacuum) Einstein field
equations were seen to hold, into a ‘finitary topos’ (fintopos) structure DTf cq .4

4 As in the previous pentalogy (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2005; Mallios and
Raptis, 2004), the subscript ‘f cq’ is an acronym standing for (f )initary, (c)ausal and (q)uantal.
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The key observation supporting this topos organization of the said finsheaves
is that the category DTf cq of finitary differential triads (fintriads)—the basic
structural units on which our application of ADG to the finitary spacetime regime
rests—is a finitary instance of an elementary topos (ET) in the original sense due
to Lawvere and Tierney (MacLane and Moerdijk, 1992). This result is a straight-
forward one coming from recent thorough investigations of Papatriantafillou about
the general categorical properties of the (abstract) category of differential triads
DT (Papatriantafillou, 2000, 2001, 2003a,b, 2004), of which DTf cq is a concrete
and full subcategory.

There is also another way of showing that DTf cq is a topos. From the fini-
tary stance that we have adopted throughout our applications of ADG-theoretic
ideas to spacetime and gravity (Mallios and Raptis, 2001, 2002, 2003; Raptis,
2005; Mallios and Raptis, 2004), we will show that DTf cq is a finitary example
of a Grothendieck topos (GT) (MacLane and Moerdijk, 1992). This arises from
a general, Grothendieck-type of perspective on the finitary (open) coverings and
their associated locally finite partially ordered set (poset) substitutes of continu-
ous (spacetime) manifolds originally due to Sorkin (1991). The main structures
involved here are what one might call ‘covering coarse graining sieves’ adapted to
the said finitary open covers (fincovers) and their associated locally finite posets.
These finitary sieves (finsieves) are easily seen to define (:generate) a Grothendieck
topology on the poset of all open subsets of the topological spacetime manifold
X, which, in turn, when regarded as a poset category, is turned into a site—i.e., a
category endowed with a Grothendieck topology (MacLane and Moerdijk, 1992).
Then, the well known result of topos theory is evoked, namely, that the collection
DTf cq of all the said finsheaves over this site is a finitary instance of a GT. Of
course, it is a general result that every GT is an ET (MacLane and Moerdijk,
1992), thus DTf cq qualifies as both.5

Much in the same way that the locally finite posets in Sorkin (1991) were
regarded as finitary substitutes of the continuous topology of the topological
spacetime manifold X and, similarly, the finsheaves in Raptis (2000b) as fini-
tary replacements of the sheaf C0

X of continuous functions on X, DTf cq may be
viewed as a finitary approximation of the elementary-Grothendieck topos (EGT)
Shv0(X)—the category of sheaves of (rings of) continuous functions over the base
C0-manifold X (MacLane and Moerdijk, 1992). Moreover, since the construction

Occasionally we shall augment this 3-letter acronym with a fourth letter, ‘v,’ standing for (v)acuum.
The general ADG-theoretic perspective on (vacuum Einstein) gravity may be coined ‘ADG-gravity’
for short (Raptis, 2005; Mallios and Raptis, 2004). In toto, the theory propounded in Mallios and
Raptis (2003), Raptis (2005), Mallios and Raptis (2004), and topos-theoretically extended herein,
may be called ‘f cqv-ADG-gravity.’

5 For similar Grothendieck-type of ideas in an ADG-theoretic setting, but with different physico-
mathematical motivations and aims, the reader is referred to a recent paper by Zafiris (2004), which
builds on the aforementioned work on algebraic quantum observables’ localizations (Zafiris, 2001).
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of our fintopos employs the basic ADG concepts and technology, DTf cq has not
only topological, but also differential geometric attributes and significance, and
thus it may be thought of as a finitary substitute of the category Man of finite-
dimensional differential manifolds—a category that cannot be viewed as a topos
proper. As we shall argue in the present paper, this is just one instance of the
categorical versatility and import of ADG.

Furthermore, in a technical sense, since the EG fintopos DTf cq is manifestly
(i.e., by construction) finitely generated, it is both coherent and localic (MacLane
and Moerdijk, 1992). The underlying locale is the usual lattice of open subsets
of the pointed, base topological manifold X that Sorkin initially considered in
Sorkin (1991). This gives us important clues about what is the subobject classifier
(MacLane and Moerdijk, 1992) �f cq of DTf cq . Also, being coherent, DTf cq has
enough points (MacLane and Moerdijk, 1992). Indeed, these are the points (of X)
that Sorkin initially ‘blew up’ or ‘smeared out’ by open subsets about them, being
physically motivated by the observation that a point is an (operationally) ‘ideal’
entity with pathological (:‘singular’) behavior in GR. Parenthetically, and from a
physical viewpoint, the ideal (i.e., non-pragmatic) character of spacetime points is
reflected by the apparent theoretical impossibility to localize physical fields over
them. Indeed, as also noted in Sorkin (1995), a conspiracy between the equivalence
principle of GR and the uncertainty principle of QM appears to prohibit the infinite
point-localization of the gravitational field in the sense that the more one tries to
localize (:measure) the gravitational field, the more (microscopic) energy-mass-
momentum probes one is forced to use, which in turn produce a gravitational
field strong enough to perturb uncontrollably and without bound the original
field that one initially set out to measure. In geometrical space-time imagery,
one cannot localize the gravitational field more sharply than a so-called Planck
length-time (in which both the quantum of action h and Newton’s gravitational
constant G are involved) without creating a black hole, which fuzzies or blurs
out things so to speak. Thus, Sorkin substituted points by ‘regions’ (:open sets)
about them, hence also, effectively, the pointed X—with the usual Euclidean C0-
topology “carried by its points” (Sorkin, 1991)—was replaced by the ‘pointless
locale’ (MacLane and Moerdijk, 1992) of its open subsets. Of course, Sorkin also
provided a mechanism—technically, a projective limit procedure—for recovering
(the ideal points of) the locally Euclidean continuum X from an inverse system
of locally finite open covers and the finitary posets associated with them. In
the end, the pointed X was recovered from the said inverse system as a dense
subset of closed points of the system’s projective limit space. Physically, the
inverse limit procedure was interpreted as the act of topological refinement, as
follows: as one employs finer and finer (:‘smaller’ and ‘smaller’) open sets to
cover X (:fincover refinement), at the limit of infinite topological refinement, one
effectively (i.e., modulo Hausdorff reflection (Kopperman and Wilson, 1997))
recovers the ‘classical’ pointed topological continuum X.
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Back to our EG fintopos. In DTf cq we represent the aforementioned acts of
topological refinement (:‘topological coarse graining’) of the covering finsieves
and their associated finsheaves involved by ‘differential geometric morphisms’.
This is a new, finitary ADG-theoretic analogue of the fundamental notion of
geometric morphism in topos theory (MacLane and Moerdijk, 1992). This def-
inition of differential geometric morphism essentially rests on a main result of
Papatriantafillou (Papatriantafillou, 2000, 2001, 2003a,b) that a continuous map
f between topological spaces (in our case, finitary poset substitutes of the topo-
logical continuum) gives rise to a pair of maps (or, categorically speaking, adjoint
functors) (f∗, f ∗) that transfer backwards and forward (between the base finitary
posets) the differential structure encoded in the fintriads that the finsheaves (of
incidence algebras on Sorkin’s finitary posets) define. This is just one mathemat-
ical aspect of the functoriality of our ADG-based constructions, but physically it
also supports our ADG-theoretic generalization of the Principle of General Co-
variance (PGC) of the manifold based GR expressed in our scheme via natural
transformations between the relevant functor (:structure sheaf) categories within
DT (Mallios and Raptis, 2003, 2004). In summa, we will observe that general
covariance, as defined abstractly in f cqv-ADG-gravity, is ‘preserved’ under the
said differential geometric morphisms associated with Sorkin’s acts of topological
refinement.

More on the physics side, but quite heuristically, having established that
DTf cq is a topos—a mathematical universe in which geometry and logic are
closely entwined (MacLane and Moerdijk, 1992), we are poised to explore in the
future deep connections between the (quantum) logic and the (differential) geom-
etry of the vector and algebra finsheaves involved in the f cqv Einstein-Lorentzian
ADG-gravity. To this end, we could invoke finite dimensional, irreducible (Hilbert
space) matrix representations H of the incidence algebras dwelling in the stalks
of the finsheaves defining the fintriads in DTf cq , and group them into associated
Hilbert finsheaves H (Vassiliou, 1994, 1999, 2000, 2005). Accordingly, via the
associated (:representation) sheaf functor (MacLane and Moerdijk, 1992; Mallios,
1998a; Vassiliou, 2005), we can organize the latter into the ‘associated Hilbert
fintopos’ Hf cq . The upshot of these investigations could be the identification, by
using the abstract sheaf cohomological machinery of ADG and the semantics of
geometric prequantization formulated à la ADG (Mallios, 1998b, 1999, 2004;
Mallios and Raptis, 2002), of what we coin a ‘quantum logical curvature’ form-
like object R in DTf cq and its representation Hilbert fintopos Hf cq . R has dual
action and interpretation in (DTf cq,Hf cq ). From a differential geometric (gravi-
tational) standpoint (in DTf cq), R marks the well known obstruction to defining
global (inertial) frames (observers) in GR. This manifests itself in the fact that
the ‘curved’ finsheaves of DTf cq do not admit global elements—i.e., global sec-
tions. From a quantum-theoretic (logical) one (in Hf cq ), R represents the equally
well known blockage to assigning values ‘globally’ to (incompatible) physical
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quantities in QT—the key feature of the ‘warped,’ ‘twisted,’ contextual (:Boolean
subalgebras’ localized), neorealist logic of quantum mechanics (Butterfield and
Isham, 1998, 1999; Butterfield et al., 2000; Rawling and Selesnick, 2000).

Accordingly, we envisage abstract ‘sheaf cohomological quantum commu-
tation relations’ between certain characteristic forms classifying the vector and
algebra (fin)sheaves involved as the raison d’être of the noted obstruction(s), sim-
ilarly to how in standard quantum mechanics the said inability to assign global
values to physical quantities is due to the Heisenberg relations between incom-
patible observables such as position and momentum. In fact, as we shall see
in the sequel, the ‘forms’ defining the characteristic classes (of vector sheaves)
in ADG, and engaging into the abstract algebraic commutation relations to be
proposed, have analogous (albeit, abstract) interpretation as ‘position’ and ‘mo-
mentum’ maps in the physical semantics of geometrically prequantized ADG-field
theory—in particular, as the latter is applied to gravity (classical and/or quantum
ADG-gravity).

The paper is organized as follows: in the next section we recall some basic
properties of the abstract category DT of differential triads as investigated re-
cently by Papatriantafillou (Papatriantafillou, 2000, 2001, 2003a,b, 2004) and its
application so far to vacuum Einstein gravity (Mallios, 2001; Mallios and Raptis,
2003; Mallios, 2005b). With these in hand, in the following section we present
the category DTf cq of fintriads involved in our f cqv-perspective on Lorentzian
QG (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2005; Mallios and Raptis,
2004), which is a full subcategory of DT, as an ET in the original sense due
to Lawvere and Tierney (MacLane and Moerdijk, 1992). Then, in Section 4 we
present the same (fin)sheaf category as a GT by assuming a Grothendieck-type
of stance against Sorkin’s locally finite poset substitutes of continuous (i.e., C0-
manifold) topologies. This generalization rests essentially on identifying certain
covering coarse graining finsieves associated with Sorkin’s locally finite open
covers of the original (spacetime) continuum X and on observing that they define
a Grothendieck topology on the poset category of open subsets of X. Under the
categorical prism of ADG as developed by Papatriantafillou, an offshoot of the
Grothendieck perspective on Sorkin is the categorical recasting of topological
refinement in Sorkin’s inverse systems of finitary poset substitutes of X in terms
of differential geometric morphisms. This gives a differential geometric flavor to
Sorkin’s originally purely topological acts of refinement, while the finite, but more
importantly the infinite, bicompleteness of the fintopos DTf cq secures the exis-
tence of a ‘classical’ continuum limit (Raptis and Zapatrin, 2000, 2001; Mallios
and Raptis, 2002, 2003) (triad) of the coarse graining inverse system of fintriads
in DTf cq . In this respect, we observe that the abstract expression of the Principle
of General Covariance (PGC) of GR as the functoriality of the ADG-vacuum
Einstein gravitational dynamics with respect to the structure sheaf A of general-
ized coordinates is preserved under differential geometric refinement. The paper



Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity 695

concludes with a fairly detailed, but largely heuristic and tentative, discussion
of four possible paths we could take along current trends in ‘categorical quan-
tum gravity’ in order to further develop our topos-theoretic scheme on f cqv-
ADG-gravity. More notably in this epilogue, we anticipate the aforesaid sheaf
cohomological quantum commutation relations, which may be regarded as being
responsible for the geometrico-logical obstructions observed in DTf cq and its as-
sociated (:representation) Hilbert fintopos Hf cq . For the reader’s convenience and
expository completeness, we have relegated the formal definitions of an abstract
elementary and an abstract Grothendieck topos to two appendices at the end.

2. MATHEMATICAL FORMALITIES: THE CATEGORY OF
DIFFERENTIAL TRIADS AND ITS PROPERTIES

2.1. ADG Preliminaries: The Physico-Mathematical Versatility
and Import of Differential Triads

The principal notion in ADG is that of a differential triad T. Let us briefly
recall it, leaving more details to the original sources (Mallios, 1998a,b, 2005b).

We thus assume an in principle arbitrary topological space X, which serves
as the base localization space for the sheaves to be involved in T. A differential
triad then is thought of as consisting of the following three ingredients:

1. A sheaf A of unital, commutative and associative K-algebras (K = R, C)
on X called the structure sheaf of generalized arithmetics in the theory.6

2. A sheaf � of K-vector spaces over X, which is an A(U )-module (∀ open
U in X).

3. A K-linear and Leibnizian relative to A map (:sheaf morphism) ∂ between
A and �,

∂ : A −→ � (1)

which is the archetypical paradigm of a (flat) A-connection in ADG
(Mallios, 1988, 1989).

In toto, a differential triad is represented by the triplet:

T := (AX, ∂,�X) (2)

Or, omitting the base topological space X (as we shall often do in the sequel),
T = (A, ∂,�).

A couple of additional technical remarks on differential triads are due here
for expository completeness:

• The constant sheaf K of scalars K is naturally injected into A: K
⊂

↪→ A.

6 ‘Coordinates’ or ‘coefficient functions’ are synonyms to ‘arithmetics’.
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• In general, a vector sheaf E in ADG is defined as a locally free A-module
of finite rank n, by which it is meant that, locally in X (:∀ open U ⊆ X),
E is expressible as a finite power (or equivalently, a finite Whitney sum)
of A: E(U ) � (A(U ))n ≡ An(U ), with n a positive integer called the rank
of the sheaf, and E(U ) ≡ �(U, E) the space of local sections of E over U .
It is also assumed that such a vector sheaf E is the dual of the A-module
sheaf � appearing in the triad in (2), i.e., E∗ = �(≡ �1) = HomA(E, A).

• As it has been repeatedly highlighted in thorough investigations on various
properties and in numerous (physical) applications of differential triads
(Papatriantafillou, 2000, 2001, 2003a,b, 2004; Mallios and Raptis, 2002,
2003, 2004; Raptis, 2005), the latter generalize differential (:C∞-smooth)
manifolds, and, in extenso, ADG abstracts from and generalizes the usual
differential geometry of smooth manifolds—i.e., the standard Differential
Calculus on manifolds, which we have hitherto coined Classical Differ-
ential Geometry (CDG) (Mallios and Raptis, 2001, 2002, 2003, 2004;
Raptis, 2005). Indeed, CDG may be thought of as a ‘reduction’ (i.e., a
particular instance) of ADG, when one assumes C∞

X —the usual sheaf of
germs of smooth (K-valued) functions on X—as structure sheaf in the
theory. In this particular case, X is a smooth manifold M , while the � in-
volved in the corresponding ‘classical’ differential triad is the usual sheaf
of germs of local differential 1-forms on (:cotangent to) M .7 However,
and this is the versatility of ADG, one need not restrict oneself to A ≡ C∞

X

hence also to the usual theory (CDG on manifolds). Instead, one can as-
sume ‘non-classical’ structure sheaves that may appear to be ‘exotic’ (e.g.,
non-functional) or very ‘pathological’ (e.g., singular) from the ‘classical’
vantage of the featureless smooth continuum and the CDG it supports,
provided of course that these algebra sheaves of generalized arithmetics
furnish one with a differential operator ∂ with which one can set up a
triad in the first place. Parenthetically, an example of the said ‘exotic,’
non-functional structure sheaves that have been used in numerous appli-
cations of ADG to gravity are sheaves of differential incidence algebras
of finitary posets (Mallios and Raptis, 2001, 2002, 2003, 2004; Raptis,
2005).8 At the same time, as very ‘pathological,’ ‘ultra-singular’ structure
sheaves, one may regard sheaves of Rosinger’s differential algebras of

7 In summa, when A ≡ C∞
X , X is a differential manifold M , E is the tangent bundle TM of smooth

vector fields on M , while � the cotangent bundle T ∗M of smooth 1-forms on M , which is the dual to
TM. Note here that in the purely algebraic (:sheaf-theoretic) ADG, there are a priori no such central
CDG-notions as base manifold, (co)tangent space (to it), (co)tangent bundle etc. ADG deals directly
with the algebraic structure of the sheaves involved (:the algebraic relations between their sections),
without recourse to (or dependence on) a background geometrical ‘continuum space’ (:manifold) for
its differential geometric support. In this sense ADG is completely Calculus-free (Mallios, 1998a,b).

8 They are also due to appear in the sequel.
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non-linear generalized functions (:distributions), hosting singularities of
all kinds densely in the underlying X. These too have so far been success-
fully applied to GR (Mallios and Rosinger, 1999, 2001; Mallios, 2001;
Mallios and Rosinger, 2002; Mallios, 2003, 2005a; Mallios and Raptis,
2004; Raptis, 2005; Mallios, 2005b).

Connection, Curvature, Field and (vacuum) Einstein ADG-Gravity. Differen-
tial triads are versatile enough to support such key differential geometric concepts
as connection and curvature. They can also accommodate central GR notions
such as the (vacuum) gravitational field and the (vacuum) Einstein differential
equations that it obeys. For expository completeness, but en passant, let us recall
these notions from Mallios (1998a), Mallios (1998b), Mallios (2001), Mallios
and Raptis (2001), Mallios and Raptis (2002), Mallios and Raptis (2003), Raptis
(2005), Mallios and Raptis (2004):

A-connections: An A-connectionD is a (‘curved’) generalization of the (flat)
∂ in (1) and its corresponding differential triad (2). It too is defined as a K-linear
and Leibnizian sheaf morphism, as follows

D : E −→ �(E) ≡ E ⊗A � ∼= � ⊗A E (3)

• Curvature of an A-connection: With D in hand, we can define its curva-
ture R(D) diagrammatically as follows

E Ω1(E) ≡ E ⊗A Ω1D

Ω2(E) ≡ E ⊗A Ω2

R ≡ D1 ◦ D D1

(4)

for a higher-order prolongation D2 of D(≡ D1). One can then define the
Ricci curvature R, as well as its trace—the Ricci scalar R. R(D), unlike
D which is only a constant sheaf K-morphism, is an A-morphism, alias,
an ⊗A-tensor (with ⊗A the usual homological tensor product functor).

• ADG-field: In ADG, the pair

(E,D) (5)

namely, a connection D on a vector sheaf E , is generically called a field.
E is thought of as the carrier space of the connection, and D acts on its
(local) sections. Note that there is no base (spacetime) manifold whatso-
ever supporting the ADG-field, so that the latter is a manifestly (i.e., by
definition/construction) background manifold independent entity.
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• Vacuum Einstein equations: The vacuum ADG-gravitational field is de-
fined to be the field (E,D) whose connection part has a Ricci scalar
curvature R(D) satisfying the vacuum Einstein equations

R(E) = 0 (6)

on the carrier sheaf E . (6) can be derived from the variation of an Einstein-
Hilbert action functional EH on the affine space AA(E) of A-connections
D on E . In (vacuum) ADG-gravity, the sole dynamical variable is the
gravitational connection D, thus the theory has been coined ‘pure gauge
theory’ and the formalism supporting it ‘half-order formalism’ (Mallios
and Raptis, 2003; Raptis, 2005; Mallios and Raptis, 2004).

Overall, applications to gravity (classical or quantum) aside for the moment, and
in view of the categorical perspective that we wish to adopt in the present paper,
perhaps the most important remark that can be made about differential triads is
that they form a category DT, in which, as befits the aforementioned generaliza-
tion of CDG by ADG, the category Man of differential manifolds is embedded
(Papatriantafillou, 2000). Thus, in the next subsection we recall certain basic cate-
gorical features of DT from Papatriantafillou (2000, 2001, 2003a,b, 2004), which
will prove to be very useful in our topos-theoretic musings subsequently.

2.2. The Categorical Perspective on Differential Triads

As noted above, in the present subsection we draw material and results from
Papatriantafillou’s inspired work on the properties of DT, ultimately with an eye
towards revealing its true topos-theoretic colors. Thus, below we itemize certain
basic features of DT, with potential topos-theoretic significance to us as we shall
see in the next section, as were originally exposed in Papatriantafillou (2000, 2001,
2003a,b, 2004). For more technical details, such as formal definitions, relevant
proofs, etc., the reader can refer to those original papers.

However, before we discuss the properties of DT, we must first emphasize
that it is indeed a category proper. Objects in DT are differential triads, while
arrows between them are differential triad morphisms. Let us recall briefly from
Papatriantafillou (2000, 2003b, 2004) what the latter stand for.

Enter Geometric Morphisms. To discuss morphisms of differential triads, we
first bring forth from MacLane and Moerdijk (1992) a pair of (covariant) adjoint
functors between sheaf categories that are going to be of great import in the sequel.

Let X, Y be topological spaces, and ShvX, ShvY sheaf categories over
them. Then, a continuous map f : X −→ Y induces a pair GMf = (f∗, f ∗) of
(covariant) adjoint functors between ShvX and ShvY (f∗ : ShvX −→ ShvY ,
f ∗ : ShvY −→ ShvX) called push-out (:direct image) and pull-back (:inverse
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image), respectively. In topos-theoretic parlance, such a pair of adjoint functors is
known as a geometric morphism (MacLane and Moerdijk, 1992).

With GM in hand, we are in a position to define differential triad morphisms.
Let TX = (AX, ∂X,�X) and TY = (AY , ∂Y ,�Y ) be differential triads over the
aforesaid topological spaces. Then, like the triads themselves, a morphism F

between them is a triplet of maps F = (f, fA, f�) having the following four
properties relative to GMf :

1. the map f : X −→ Y is continuous, as set by GMf ;
2. the map fA : AY −→ f∗(AX) is a morphism of sheaves of K-algebras over

Y , which preserves the respective algebras’ unit elements (i.e., fA(1) = 1);
3. the map f� : �Y −→ f∗(�X) is a morphism of sheaves of K-vector

spaces over Y , with f�(αω) = fA(α)f�(ω), ∀(α,ω) ∈ AY ×Y �Y ; and
finally,

4. with respect to the K-linear, Leibnizian sheaf morphism ∂ in the respective
triads, the following diagram is commutative:

f∗(AX) f∗(ΩX)
f∗(∂X)

AY ΩY
∂Y

fA fΩ

reading: f� ◦ ∂Y = f∗(∂X) ◦ fA.

To complete the argument that DT is a true category, we note that for each triad TX

there is an identity morphism idTX
:= (idx, idA, id�) defined by the corresponding

identity maps of the spaces involved in the triad. There is also an associative
composition law (:product) between triad morphisms (Papatriantafillou, 2000,
2003b, 2004), making thus DT an arrow (:triad morphism) semigroup, complete
with identities (:units)—one for every triad object in it.

Here, we would like to make some auxiliary and clarifying remarks about
DT that will prove to be helpful subsequently:

• For a given base space X, the collection {(TX,FX := (idX, fA, f�))} con-
stitutes a subcategory of DT, symbolized as DTX.

• In general, differential triad morphisms are thought of as maps that preserve
the purely algebraic (:sheaf-theoretic) differential (geometric) structure or
‘mechanism’ encoded in every triad. They are abstract differentiable maps,
generalizing in many ways the usual smooth ones between differential
manifolds in Man.
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• Indeed, following the classical (CDG) jargon, in ADG we say that a con-
tinuous map f : X −→ Y is differentiable, if it can be completed to a
differential triad morphism. Such continuity-to-differentiability comple-
tions of maps, in striking contradistinction to the case of Man and CDG,
are always feasible in DT and ADG, as the following two results show:

• If X and Y are topological spaces as before, f : X −→ Y continuous, and
X carries a differential triad TX, the push-out f∗ induces a differential triad
on Y . Vice versa, if Y carries a differential triad, the pull-back f ∗ endows
X with a differential triad. Furthermore, these so-called ‘final and initial
differential structures’ respectively, satisfy certain universal mapping rela-
tions that promote f to a differentiable map in the sense above—i.e., they
complete it to a triad morphism (Papatriantafillou, 2003a,b, 2004).9 This
is in glaring contrast with the usual situation in Man, whereby if X is a
smooth manifold equipped with an atlas A, while Y is just a topological
space, one cannot push-forward A by f∗ in order to make Y a differential
manifold and in the process turn f into a smooth map. Similarly for the
reverse scenario in which Y is a differential manifold charted by a smooth
atlas B, and X simply a topological space: f ∗ cannot ‘pull back’ B on X

thus promote the latter into a smooth space.10

• Much in the same fashion, if X is a differential manifold and ∼ an (arbi-
trary) equivalence relation on it, the moduli space X/∼ does not inherit,
via the (possibly continuous) canonical projection f∼ : X −→ X/∼, the
usual differential structure of X (and, accordingly, the possibly continu-
ous surjection f does not become differentiable in the process). This is
not the case in DT; whereby, when the base space of a differential triad
is modded-out by an equivalence relation, the resulting quotient space
inherits the original triad’s structure (i.e., it becomes itself a differential
triad), and in the process f∼ becomes a triad morphism (Papatriantafil-
lou, 2003a,b, 2004). This particular example of the versatility of DT (and
ADG!), as contrasted against the ‘rigidity’ of Man (and CDG!), has been
exploited numerous times in the past, especially in the finitary case of
Sorkin (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2005; Mallios and
Raptis, 2004). We shall exploit it again later in this paper.

9 Furthermore, as shown in Papatriantafillou (2003a,b, 2004), the composition of a differentiable map
with a continuous one also becomes differentiable in the sense above.

10 Results like this have prompted workers in ADG to develop, as an extension of the usual ‘differential
geometry of smooth manifolds’ (:CDG in Man), what one one could coin ‘the differential geometry
of topological spaces’ (ADG in DT). This possibility hinges on the following ‘Calculus-reversal’
observed in ADG and noted above: as in the usual CDG on manifolds ‘differentiability implies
continuity’ (:a smooth map is automatically continuous), in ADG the converse is also possible;
namely, that ‘continuity implies differentiability!’ (:a continuous map can become differentiable).



Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity 701

After these telling preliminaries, we return to discuss the categorical properties of
DT that will be of potential topos-theoretic significance in the sequel. Once again,
we itemize them, commenting briefly on every item:

• DT is bicomplete. This means that DT is closed under both inverse
(alias, projective) and direct (alias, inductive) limits of differential triads
(Papatriantafillou, 2001, 2004). In particular, it is closed under finite limits
(projective) and colimits (inductive)—i.e., it is finitely bicomplete.11

• DT has canonical subobjects. As it has been shown in detail in
Papatriantafillou (2003b, 2000, 2004), “every subset of the base space
of a differential triad defines a differential triad, which is a subobject of
the former.”12 On the other hand, Man manifestly lacks this property,
since it is plain that an arbitrary subset of a differential manifold is not
itself a manifold.

• DT has finite products. In Papatriantafillou (2003b, 2000, 2004) it is also
shown that there are finite cartesian products of differential triads in DT.

• DT has an exponential structure. This means that given any two differential
triads T,T

′ ∈ DT, one can form the collection T
′T of all triad morphisms

in DT from T to T
′
. Common in categorical notation is the alternative

designation of T
′T by Hom(T,T

′
) (:‘hom-sets of triad morphisms’). In

addition, the exponential is supposed to effectuate canonical isomorphisms
relative to the aforementioned (cartesian) product in DT. Thus, for T, T

′

as above and T
′′

any other triad in C: Hom(T
′′ × T,T

′
) � Hom(T

′′
,T

′T)

(or equivalently: T
′T

′′×T � (T
′T)T

′′
).

3. THE CATEGORY OF FINTRIADS AS AN ET

The high-point of the present section is that we show that the category DTf cq

of fintriads, which is a subcategory of DT, is an ET (MacLane and Moerdijk, 1992).
Before we do this however, let us first recall en passant the finitary perspective
on continuous (spacetime) topology as originally championed by Sorkin (1991)
and then extended by the sheaf-theoretic ADG-means to the differential geometric
realm, with numerous physical applications to discrete and quantum spacetime
structure (:causets and qausets) (Raptis and Zapatrin, 2000, 2001; Raptis, 2000a,b),
vacuum Einstein-Lorentzian gravity (classical and quantum) (Mallios and Raptis,
2001, 2002, 2003), and gravitational singularities (Raptis, 2005; Mallios and
Raptis, 2004).

11 The synonyms ‘co-complete’ or ‘co-closed’ are often used instead of ‘bicomplete.’
12 Excerpt from the abstract of Papatriantafillou (2003b).
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3.1. ‘Finatarities’ Revisited

Below, we give a short, step-by-step historical anadromy to the development
of the finitary spacetime and gravity program by ADG-theoretic means, isolating
and highlighting the points that are going to be relevant to our ADG cum topos-
theoretic efforts subsequently.13 The account concludes with the arrival at the
category DTf cq of fintriads, which we present as an ET proper in the following
two subsections:

• Finitary poset substitutes of topological manifolds. In Sorkin (1991),
Sorkin commenced the finitary spacetime program solely with topology
in mind. Namely, he substituted the usual continuous (C0) topology of
an open and bounded region X of the spacetime manifold M by a poset
Pi relative to a locally finite open covering Ui

14 of X. He arrived at Pi ,
which is a T0-topological space in its own right, by factoring out X by the
following equivalence relation between X’s points:

x
Ui∼ y ⇔ �(x)|Ui

= �(y)|Ui
, ∀x, y ∈ X;

Pi := X/
Ui∼

(7)

with �(x)|Ui
:= ∩{U ∈ Ui : x ∈ U} the smallest open set in Ui (or equiv-

alently, in the subtopology τi of X generated by taking arbitrary unions of
finite intersections of the covering open sets in Ui) containing x. �(x)|Ui

is otherwise known as the Alexandrov-Čech nerve of x relative to the open
covering Ui (Raptis and Zapatrin, 2000). The ‘points’ of Pi are equivalence
classes (:nerves) of X’s points, partially ordered by set-theoretic inclusion
‘⊆,’ with the said equivalence relation being interpreted as ‘indistinguisha-
bility’ of points relative to our ‘coarse measurements’ in Ui . That is to say,
two points (:‘events’) of X in the same class cannot be distinguished (or
‘separated,’ topologically speaking) by the covering open sets (:our ‘coarse
measurements’) in Ui .

Sorkin’s scenario for approximating (:‘substituting’) the locally
Euclidean (:continuum) topology of X by the finitary topological posets
(:fintoposets) Pi hinges on the fact that the latter constitute an inverse
(alias, projective) system

←−
P relative to a topological refinement net

I ≡ ←−
U i := {(Ui ,�}i∈I of the fincovers of X. Here, the partial order

Ui � Uj is interpreted as follows: ‘the covering Uj (resp. Ui) is finer (resp.
coarser) than Ui (resp. Uj ).’ Equivalently, Uj is a refinement of Ui , and
thus the latter is a subcover of the former. Correspondingly, τi is a subtopol-
ogy of τj . Henceforth, the net I will be treated as an index-set labelling the

13 For more details on what follows, the reader is referred to the aforementioned papers on the finitary
ADG-based approach to spacetime and gravity.

14 The index ‘i’ will be explained shortly.
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open coverings of X and the corresponding fintoposets. However, we may
use the symbols

←−
U i and I interchangeably, hopefully without causing any

confusion. Parenthetically, and with an eye towards our subsequent topos-
theoretic labors in the light of DT, it is worth pointing out here that

←−
P can

be described as an I -indexed family of pentads:
←−
P := {(X, fi, Pi, fj , Pj , fji)}, (i � j ∈ I ) (8)

whereby, Fi (resp. Fj ) is a continuous surjection (:projection map) from
X to Pi (resp. Pj ), while fji a continuous fintoposet morphism from Pj to
Pi corresponding to the act of topological refinement when one refines the
open cover Ui to Uj . En passant, we note that the epithet ‘continuous’ for
fji above pertains to the fact that one can assign a ‘natural’ topology—the
so-called Sorkin lower-set or sieve-topology—to the Pis, whereby an open
set is of the formO(x) := {y ∈ Pi : y −→ x}, with ‘−→’ the partial order
relation in Pi . Basic open sets for the Sorkin topology are defined via the
links or covering (‘immediate arrow’) relations in (the Hasse diagram of)
Pi : OB(x) := {y ∈ Pi : (y −→ x) ∧ (/∃ z ∈ Pi : y −→ z −→ x)}. Then,
fji is a monotone (:partial order preserving) surjection from Pj to Pi , hence
it is continuous with respect to the said Sorkin sieve-topology. Accordingly,
the arrow x −→ y can be literally interpreted as the convergence of the
constant sequence (x) to y in the Sorkin topology (Sorkin, 1991). This
sieve-topology of Sorkin will prove to be very important for our topos-
theoretic (and especially the GT) musings in the sequel.15

From Sorkin (1991) we also recall that there is a universal mapping
condition obeyed by the triplets (Fi, Fj , fji) of continuous surjective maps

in
←−
P, which looks diagrammatically as follows

X Pj
Fj

Fi

Pi

fji

(9)

and reads: Fi = fji ◦ Fj . That is, the system (Fi)i∈I of canonical pro-
jections of X onto the fintoposets is ‘universal’ as far as maps between
T0-spaces are concerned, with fji the unique map—itself a partial order
preserving (monotone) surjection of Pj onto Pi—mediating between the
continuous projections Fi and Fj of X onto the T0-fintoposets Pi and Pj ,
respectively.

15 See next section and Appendix B.
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Then, the central result in Sorkin (1991)—the one that qualifies the
fintoposets as genuine finitary approximations of the continuous topology
of the C0-manifold X—is that, thanks to the universal mapping property
that the Pis enjoy, at the projective limit of infinite topological refine-
ment (:coarse graining) of the underlying coverings in I ,

←−
P effectively16

yields back the original topological continuum X (up to homeomorphism).
Formally, one writes:

lim
∞←j

fji(Pi) =: P∞
F∞←→

homeo.
X (modulo Hausdorff reflection) (10)

Let it be noted here that this universal mapping property of the maps
between the T0-fintoposets above is completely analogous to the one pos-
sessed by the differential triad morphisms (e.g., the push-outs and pull-
backs along continuous maps between the triads’ base topological spaces)
(Papatriantafillou, 2003a,b, 2004) mentioned earlier in 2.2. In fact, shortly,
when we discuss fintriads and their inverse limits, the ideas of Sorkin and
Papatriantafillou will appear to be tailor-cut for each other; albeit, with
the ADG-based work of Papatriantafillou adding an important differential
geometric slant to Sorkin’s originally purely topological considerations.

• Incidence algebras of T0-posets. One can use a discrete version of
Gel’fand duality to represent the fintoposets Pi above algebraically, as so-
called incidence algebras (write �i(Pi), and read ‘the incidence algebra
�i of the fintoposet Pi’) (Raptis and Zapatrin, 2000, 2001). The cor-
respondence Pi −→ �i is manifestly functorial,17 especially when one
regards the Pis as graded simplicial complexes having for simplices the
aforementioned Čech-Alexandrov nerves (Raptis and Zapatrin, 2000,
2001; Zapatrin, 2001a).

The �is, being (categorically) dual objects to the ‘discrete’ homological
(:simplicial) Pis, may be regarded as ‘Z+-graded discrete differential K-
algebras’—reticular cohomological analogues of the usual spaces (:mod-
ules) of (smooth) differential forms on the manifold X in focus (Raptis and
Zapatrin, 2000, 2001). Indeed, they were seen to be ‘discrete differential
manifolds’ (in the sense of Dimakis and Müller-Hoissen (1994); Dimakis
et al. (1995); Dimakis and Müller-Hoissen (1999)), as follows

�i =
⊕

p∈Z+

�
p

i =
Ai︷︸︸︷
�0

i ⊕
Ri︷ ︸︸ ︷

�1
i ⊕ �2

i ⊕ . . .≡ Ai ⊕ Ri (11)

16 That is, modulo Hausdorff reflection (Kopperman and Wilson, 1997).
17 The reverse correspondence �i −→ Pi having been coined Gel’fand spatialization (Zapatrin, 1998;

Raptis and Zapatrin, 2000, 2001).
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where Ri is a Z+-graded Ai-bimodule of (exterior, real or complex) differ-
ential form-like entities �

p

i (p ≥ 1),18 related within each �i by nilpotent
Cartan-Kähler-type of (exterior) differential operators d

p

i : �
p

i −→ �
p+1
i ,

with d0
i ≡ ∂i : �0 −→ �1 the finitary analogue of the standard derivation

∂ in (2) and d
p

i : �
p

i −→ �
p+1
i (p ≥ 1) its higher order (grade or degree)

prolongations.
Plainly, it is tacitly assumed here that the locally Euclidean X, apart

from the continuous (C0) topology, also carries the usual differential (:C∞-
smooth) structure, which in turn the �is can be thought of as approximat-
ing ‘discretely’ (‘finitarily’). Thus, the cohomological �is too are seen to
comprise an inverse system

←−
� relative to the aforesaid topological refine-

ment net of fincovers of X (Mallios and Raptis, 2002, 2003; Raptis, 2005;
Mallios and Raptis, 2004).

• Finsheaves of incidence algebras: fintriads. The key observation in ar-
riving at finsheaves (Raptis, 2000b) of incidence algebras is that by con-
struction (i.e., by the aforesaid method of Gel’fand spatialization) the
map �i −→ Pi is a local homeomorphism, alias, a sheaf (MacLane and
Moerdijk, 1992; Mallios, 1998a,b). Thus, finsheaves �i(Pi) of incidence
algebras over Sorkin’s fintoposets were born (Mallios and Raptis, 2001).
Moreover, since the �is carry not only topological, but also differential
geometric structure as noted above, the �is may be thought of as finitary
analogues (‘approximations’) of the ‘classical’ (:C∞-smooth) differential
triad T∞ supported by the differential manifold X. They are coined ‘fin-
triads’ and they are fittingly symbolized by Ti (Mallios and Raptis, 2002,
2003; Raptis, 2005; Mallios and Raptis, 2004).

There are actually two ways to arrive at Tis—one ‘indirect’ and
‘constructive,’ the other ‘direct’ and ‘inductive’:

1. The ‘indirect-constructive’ way is the one briefly described above,
namely, by first obtaining the Pis from Sorkin’s factorization algo-
rithm, then by defining the corresponding �is and suitably topolo-
gizing them in a ‘discrete’ Gel’fand representation (:duality) fashion,
and finally, by defining finsheaves of the latter (regarded as discrete
differential algebras) over the former. This is the path we followed
originally in our work (Mallios and Raptis, 2001, 2002, 2003).

2. The ‘direct-inductive’ way goes as follows (Raptis, 2005; Mallios
and Raptis, 2004): one simply starts with the ‘classical’ smooth

18 In (11) above,Ai ≡ �0
i is a commutative subalgebra of �i called the algebra of coordinate functions

in �i , while Ri ≡ ⊕p≥1
i �

p

i a linear subspace of �i called the module of differentials over Ai . The
elements of each linear subspace �

p

i of �i in Ri have been regarded as ‘discrete’ analogues of the
usual smooth differential p-forms teeming the usual (cotangent bundle over the) smooth manifold
(Raptis and Zapatrin, 2000, 2001).
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differential triad T∞ on the (differential) manifold X and, by calling
forth Papatriantafillou’s push-out/pull-back results in Papatriantafil-
lou (2003a, 2004) that we mentioned back in 2.2, one induces the
usual differential structure, via the push-out Fi∗ of the continuous

surjection Fi : X −→ Pi in (9) above, from X to the
Ui∼-moduli

space Pi . In the process, Fi becomes differentiable— ie, it lifts to a
triad morphism Fi : T∞ −→ Ti . Incidentally, from Papatriantafil-
lou’s results (Papatriantafillou, 2003a,b, 2004) it follows that the con-
tinuous surjection fji in (9) is also promoted to a fintriad morphism
Fji : Tj −→ Ti .

From Mallios and Raptis (2001, 2002, 2003); Raptis (2005); Mallios
and Raptis (2004) we draw that a fintriad can be symbolized as Ti =
(Ai , ∂i ,�i), where Ai is a unital, abelian, associative algebra (structure)
sheaf whose stalks are inhabited by elements (:coordinate function-like en-
tities) ofAi in (11), while �i is an Ai-bimodule with elements (:differential
form-like entities) of Ri in (11) dwelling in its fibers.

• The category DDTTf cq and its completeness in DT. Finally, we can orga-
nize the Tis into the category DTf cq of fintriads. Objects in DTf cq are the
said fintriads, while arrows between them fintriad morphisms. It is easy
to see that DTf cq is a full subcategory of DT (MacLane and Moerdijk,
1992).
An important result about DTf cq is that it is finitely complete in itself, and
infinitely complete in DT— ie, it is closed under finite projective limits, and
closed in DT under infinite inverse limits. This is a corollary result which
derives—also bearing in mind Sorkin’s inverse limit result about

←−
P (10), as

well as the universal mapping properties observed in both Sorkin’s scheme
(Sorkin, 1991) and in DT (Papatriantafillou, 2003a,b, 2004)—from the
following theorem proved by Papatriantafillou in Papatriantafillou (2001,
2004):19

Theorem. Let [Ti = (Ai , ∂i ,�i); Fji = (fji, fjiA, fji�)]i�j∈I be a
projective system in DTf cq ⊂ DT and let Pi be the base space of each

Ti , with
←−
P = (Pi, fji) their inverse system considered above. There

is a differential triad T∞ over the inverse limit space X
homeo.� P∞ in (10),

satisfying the universal property of the projective limit in DT.
Dually, the same would hold for an inductive system of differential tri-
ads over an inductive system of base spaces and their direct limit space
(Papatriantafillou, 2001, 2004). Here, in connection with Sorkin’s ‘fini-
tarities’ (Sorkin, 1991), we happen to be interested only in the projective

19 Quoting the author almost verbatim from Papatriantafillou (2001) (Theorem 4.4), with slight changes
in notation and language to suit our finitary considerations here.
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(inverse) limit case, but DTf cq is also co-complete in DT. In fact, it is
noteworthy here that inductive systems of fintoposets (as base spaces)
were originally employed in Raptis (2000b) in order to define finsheaves
as finitary approximations of the sheaf C0

X of continuous functions over
the topological manifold X. Indeed, the stalks of the latter, which host the
germs of continuous functions on X, were seen to arise as inductive limits
of the said finsheaves at the limit of infinite topological refinement of the
underlying open covers Ui .

• fcqv-ADG-gravity. Parenthetically, in closing this subsection, we must
note the significant physical import of fintriads in ADG-gravity. So far, we
have been able to formulate a manifestly background differential spacetime
manifold independent vacuum Einstein-Lorentzian gravity as a pure gauge
theory,20 with finitistic, causal and quantum traits built into the theory from
the very beginning (Mallios and Raptis, 2001, 2002, 2003). The high-point
in those investigations is that every fintriad Ti , equipped with a finitary
connection Di (:a finitary instance of (3)) and its associated curvature Ri

(:a finitary example of (4)), is seen to support a finitary version of the
vacuum Einstein equations. (6):

Ri(Ei) = 0 (12)

with geometric prequantization traits already attributed to Ei (e.g., its local
sections have been sheaf cohomologically interpreted as quantum parti-
cle states of the ‘field of quantum causality’—fittingly called ‘causons’
(Mallios and Raptis, 2002)).

Moreover, we have made thorough investigations on how ADG-
gravity can evade singularities of the most pathological kind,21 and their as-
sociated unphysical infinities (Mallios and Rosinger, 1999, 2001; Mallios,
2001; Mallios and Rosinger, 2002; Mallios, 2002, 2003, 2005a, 2004)
(especially (Mallios and Raptis, 2004)), with a special application to the
finitary-algebraic ‘resolution’ of the inner Schwarzschild singularity of the
gravitational field of a point-particle (Raptis, 2005).

The f cqv-ADG-gravitational dynamics (12) may be thought of as ‘taking
place’ within the category DTf cq , which in turn may be regarded as a mathematical
‘universe’ (‘space’) of (dynamically) varying qausets. We shall return to comment
more on this in 4.3 and subsequent sections, after we show that DTf cq is actually
a finitary example of an EGT—a fintopos. The crux of the argument here is

20 That is, a formulation of gravity solely in terms of an algebraic A-connection field D.
21 Like for instance when Rosinger’s differential algebras of generalized functions (:non-linear distri-

butions), hosting singularities everywhere densely in the background topological space(time) X, are
used as structure sheaves in the theory (:‘spacetime foam differential triads’) (Mallios and Rosinger,
2001, 2002).
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that as every sheaf (and in extenso topos) of, say, sets, can be thought of as a
(mathematical) world of varying sets (MacLane and Moerdijk, 1992), so DTf cq

may be thought of as a universe of dynamically variable (qau)sets, varying under
the influence (action) of the f cqv-ADG-gravitational field Di . We thus first turn
to the topos-theoretic perspective on DTf cq next.

3.2. DDTTfcq as a Finitary Example of an ET

The title of the present subsection is one of the two main mathematical results
in the present paper—the other being that DTf cq is also a finitary instance of a
GT-like structure, as we shall show in the next section.

First, let us stress the following subtle point: DTf cq is a category of
(fin)sheaves not over a fixed topological space like the usual sheaf categories
(:topoi) encountered in standard topos theory (MacLane and Moerdijk, 1992),
but over ‘variable’ finitary topological spaces (:fintoposets)—spaces that ‘vary’
with topological refinement (:coarse graining) and the associated ‘degree i ∈ I of
topological resolution,’ as described above.22

Now, the arrival at the result that DTf cq is an ET (:a cartesian closed category)
is quite straightforward: one simply has to juxtapose the properties of DT, as they
were gathered from Papatriantafillou (2000, 2001, 2003a,b, 2004) and presented
at the end of Subsection 2.2, against the formal definitional properties of an ET
à la Lawvere and Tierney, as taken from MacLane and Moerdijk (1992) and
synoptically laid out in appendix A at the end. Then, one should bring forth that
DTf cq is a full subcategory of DT, enjoying all the latter’s formal properties.
Thus, to recapitulate these properties, DTf cq is an ET because it:

• is closed under finite limits and colimits (:it is finitely bicomplete); more-
over, it is closed even ‘asymptotically’ (ie, under infinite topological re-
finement of the base Pis and their underlying Uis) in DT, as we saw
earlier;

• has finite (cartesian) products and coproducts (direct sums);
• has an exponential structure given, for any pair of fintriads, by continuous

maps fji between the underlying fintoposets and the fintriad morphisms
that these maps lift to; moreover, this structure ‘intertwines’ canonically
with the said cartesian product as explained above; and finally,

• has canonical subobjects. That is to say, it has a subobject classifier that
it inherits naturally from the archetypical topos Shv(X) of sheaves (of
structureless sets, for example; or for instance, from the topos Shv0(X) of
sheaves C0

X of rings of continuous K-valued functions) over the original

22 This remark will prove to be important in the sequel when we interpret DTf cq as a finitary replace-
ment of the classical ‘continuum topos’ Shv0(X), and in the last section, where we shall remark on
the possibility of relating our scheme to Isham’s ‘quantizing on a category’ scenario.
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topological manifold X. This will become more transparent in the next
section where we present DTf cq alternatively as a GT.

An important question that arises from the exposition above is the following: what
is the subobject classifier � in DTf cq , and perhaps more importantly, what is its
physical interpretation? For this, the reader will have to wait for our ADG-based
Grothendieck-type of perspective on Sorkin’s finitary scheme in the next section.

4. AN ADG-THEORETIC GROTHENDIECK-TYPE OF
PERSPECTIVE ON SORKIN IN DDTT f cq

In this section we give an alternative topos-theoretic description of the ET
DTf cq . We present it as a finitary example of a GT-like structure. In a way,
a Grothendieck-type of perspective on the finitary topology scenario of Sorkin
(1991) is perhaps more ‘canonical’ and ‘natural’ than the (more abstract) ET
vantage for viewing DTf cq as a topos proper, because in Sorkin’s work, as
we witnessed in the previous section, such notions as covering, sieve-topology
and its associated topological coarse graining procedure, figure prominently in
the theory and they have well known, direct and generalized correspondents in
Grothendieck’s celebrated work (MacLane and Moerdijk, 1992).

At the same time, by presenting DTf cq as a type of GT will enable us to see
straightforwardly what the subobject classifier �f cq is in it. With �f cq in hand,
and by viewing it as a ‘generalized truth values object’ as it is its customary logical
interpretation in standard topos theory (MacLane and Moerdijk, 1992), we shall
then open paths for potentially exploring deep connections between (spacetime)
geometry (e.g., topology) and (quantum) logic. In fact, since DTf cq carries differ-
ential geometric (not just topological) information, and since in the past we have
successfully employed this structure to model f cqv-ADG-gravity, the road will
be open for investigating close relationships between the differential geometric
(‘gravitational’) structure of the world, and its quantum logical traits. We shall
explore two such potential relationships with important physical interpretation and
implications in the epilogue. In the present section however, we just present the
topological refinement in Sorkin’s scheme by differential geometric morphisms in
DTf cq .

Ex altis viewed, and more from a technical (:mathematical) vantage, invok-
ing Grothendieck’s categorical ideas in an ADG-theoretic context appears to be
only natural, since the machinery of (abstract) sheaf cohomology is central in the
ADG-technology (Mallios, 1998a,b, 2005b), while (abstract) sheaf cohomology
was originally the raison d’être et de faire of Grothendieck’s pioneering category-
theoretic work in general homological algebra. For it is no exaggeration to say
that Grothendieck’s inspired vision, within the purely mathematical ‘confines’
of algebraic geometry, was to replace ‘space’ (:topology) by sheaf cohomology
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(MacLane and Moerdijk, 1992). Similarly, in Mallios’ ADG, now within the field
of differential geometry and with a strong inclination towards theoretical physics’
applications (especially in QG) (Mallios, 1998a, 2005b), the ultimate desire is to
do away with the background geometrical (smooth) spacetime (manifold) and the
various (differential geometric) anomalies (:singularities and related unphysical
infinities) that it carries (Mallios and Raptis, 2004; Raptis, 2005), and focus solely
on the purely algebraico-categorical (:sheaf-theoretically modelled) relations be-
tween the ‘objects’ that ‘live’ on that surrogate background—i.e., the dynamical
fields D and the laws (:differential equations) that they obey on their respective
carrier sheaves E , such as (6) (Mallios and Raptis, 2003; Mallios, 2003; Mallios
and Raptis, 2004; Mallios, 2005a, 2004).

4.1. DDTT f cq as a Finitary Instanceof a GT

As noted in the introduction and briefly described in 3.1 above, Sorkin’s main
idea in Sorkin (1991) was to ‘blow up’ or ‘smear’ the points of the topological
spacetime manifold X by ‘fat’ regions (:open sets) U about them belonging to
locally finite open covers Uj of X, and then to replace (:approximate) the (locally)
Euclidean C0-topology of X, which is supposed to be “carried by its points”
(Sorkin, 1991), by T0-fintoposets Pj .

Such an enterprize has a rather natural correspondent and quite a generalized
description in category-theoretic terms. The latter pertains to Grothendieck’s cel-
ebrated work on generalized topological spaces called sites, for the definition of
which covering sieves (associated with open covers in the usual topological case),
and a Grothendieck topology generated by them play a central role (MacLane and
Moerdijk, 1992).23 Thus, below we give a Grothendieck-type of description of
Sorkin’s ‘finitarities,’ which will subsequently help us view DTf cq as a GT of a
finitary sort. In turn, in complete analogy to how the Pj s in Sorkin’s work were
thought of as locally finite approximations of the continuous topology of X, here
the EGT-like DTf cq can be regarded as a finitary substitute of the archetypical
EGT Shv0(X)—the topos of sheaves (of rings) of continuous functions on the
topological manifold X. Thus, our research program of applying ADG-theoretic
ideas to finitary spacetime and gravity (Mallios and Raptis, 2001, 2002, 2003;
Raptis, 2005; Mallios and Raptis, 2004) is hereby reaching its categorical (:topos-
theoretic) climax.

So to begin with, let X be the relatively compact region24 of a topological
manifold M that Sorkin considered in Sorkin (1991), and Uj (a locally finite) open
cover for it, which also belongs to the inverse system (:topological refinement

23 See Appendix B at the end for the relevant (abstract) definitions.
24 Recall that a topological space X is said to be relatively compact if every open cover of it admits a

locally finite refinement.
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net)
←−
U i := {Uj }j∈I .25 X may be viewed as a poset category PO(X), having for

objects its open subsets and for (monic) arrows between them subset-inclusions
(:one arrow for every pair of subsets, if they happen to be ordered by set-theoretic
inclusion):26

U,V ⊆ X, open : U −→ V ⇔ U ⊆ V (13)

Then, a sieve S on U , S(U ), is an I -indexed collection of open subsets of U

({Vi∈I : Vi −→ U}) such that if W −→ V ∈ S(U ) ⇒ W ∈ S(U ). One moreover
says that S(U ) covers U (i.e., S(U ) is a covering sieve for the object U in PO(X)),
if U ⊆ ∪i∈IVi ∈ S(U ). Arrow-wise, one says that S(U ) covers the arrow W −→
U inPO(X) when W −→ ∪iVi . With the aid of the relevant abstract definitions in
appendix B, it is fairly straightforward to show for the concrete category PO(X)
that:

Theorem: The collection {(U, S(U ))}, as U runs through all the objects inPO(X),
defines a Grothendieck topology J on PO(X).27 Thence, the pair (PO(X), J ) is
an example of a site—the poset category POX equipped with the Grothendieck
topology J .

Equivalently, calling to action the open covering Uj of X (and in extenso of
U , since plainly, ∪iVi ←− U ), we can generate the following covering sieve for
U based on Uj :

Sj ≡ SUj
(U ) = {W −→ U : W −→ Vi, for some Vi ∈ Uj } (14)

It follows then that, as Uj runs through the inverse system (:refinement net)←−
U i = {Uj }j∈I , a basis BJ for the said Grothendieck topology J on PO(X) is
defined,28 which also turns the said poset category into the site (PO,BJ ) (MacLane
and Moerdijk, 1992).29

Now we have a good grasp of how Grothendieck-type of ideas can be applied
to PO(X) so as to promote it to a site. Thus, let us turn to our category DTf cq

and see how it can qualify as a finitary version of a GT-like structure.
Prima facie, and in view of the general and abstract ideas presented in

appendix B, we could maintain that a ‘natural’ two-step path one could follow in
order to cast DTf cq as a finitary type of GT is the following:

25 In what follows, the reader should not confuse the refinement index ‘j ’ used to label the fincovers in
the topological refinement net, with the subscript ‘i’ labelling the open sets in a particular covering.
However, we shall use the same symbol (:‘I ’) to denote the index sets for both, hopefully without
causing any misunderstanding.

26 In fact, PO(X) is more than a poset, it is a lattice, but this will not concern us in what follows.
27 This is just exercise 1 on page 155 of MacLane and Moerdijk (1992).
28 Again, see Appendix B for the relevant (abstract) definitions.
29 As noted in Appendix B, we hereby do not distinguish between the site (PO(X), J ) and

(PO(X),BJ ) generating it.
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• first head-on endow DTf cq with some kind of Grothendieck topology thus
turn it into a site-like structure, as we did for PO(X) above (MacLane and
Moerdijk, 1992);

• then define sheaves over the resulting site and collect them into a GT-like
structure.

However, the alert reader could immediately counter-observe that:

• On a first sight, it appears to be hopeless to directly try and Grothendieck-
topologize the collection U of all coverings U of the continuum X (or
equivalently, the collection of all subtopologies τU of X generated by
them), since that family is not even a set proper—i.e., it is a class. As a
result, if one wished to view U as some sort of category, it would certainly
not be small, unlike what the usual Grothendieck categories are assumed
to be.30

• Moreover, as noted earlier, DTf cq is not a category of sheaves over
a fixed base topological space, so that even if the latter was somehow
Grothendieck-topologized to a site, DTf cq would still not be a GT proper.
Rather, the base spaces of the fintriads in DTf cq are ‘variable’ entities,
varying with the topological refinement (:coarse graining) of the underly-
ing finitary coverings and their associated fintoposets.

Our way-out of this two-pronged impasse is based on the following two
observations:

1. First, in response to the first ‘dead-end’ above, we note that the locally
finite open covers Ui of Sorkin are, categorically speaking, ‘good,’ ‘well
behaved’ objects when it comes to defining some generalized kind of
‘topology’ on them and taking ‘limits’ with respect to it. This is due to
the fact that the collection

←−
U i of all the finitary coverings of X comprise

a so-called cofinal subset of the class U of all (proper) open covers of X

(Mallios, 1998a,b).
2. Second, and issuing from the point above, one could indeed use the topo-

logical refinement partial order (Ui � Uj ⇔ Pj

fji−→ Pi) on the net
←−
U i

(and its associated projective system
←−
P of fintoposets)31 so as to de-

fine some kind of ‘topological coarse graining sieve-topology’ on it à la
Grothendieck. Then indeed, Sorkin’s inverse limit ‘convergence’ of the

30 See Appendix B. Similar reservations were expressed in Isham (1989), where the poset of subtopolo-
gies of a continuum appeared to be a class unmanageably large, hence unsuitable for quantization.
Thus Isham had to resort to finite topologies (:topologies on a finite set of points) and the lattice of
subtopologies thereof for a plausible quantization scenario.

31 One can use
←−
U i and

←−
P interchangeably, since one can transit from the Uis in

←−
U i to the Pis in

←−
P

by Sorkin’s ‘factorization algorithm’ (7).
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elements of
←−
U i (and their associated Pis) to X at infinite topological

refinement (10), can be accounted for on the grounds of that (abstract)
topology. In the process however, a new type of GT arises, which we
call ‘a finitary approximation topos’ (‘fat’)—one that may be thought of
as ‘approximating’ the usual ‘continuum topos’ Shv0(X) of sheaves of
(rings of) continuous functions over the pointed C0-manifold X, much in
the same way that the fintoposets Pi were seen to approximate the con-
tinuum X (or equivalently, the finsheaves in Raptis (2000b) were seen to
approximate the ‘continuum’ sheaf C0

X).32

DDTT f cq as a ‘fat’-Type of GT. We can endow the poset category
←−
U i with a

Grothendieck-type of topology by introducing the notion of coarse graining fin-
sieves. Indirectly, these played a significant role earlier, when we defined the basis
BJ for the site (PO(X), J ).

So, recall that the fincovers in
←−
U i are partially ordered by refinement, Ui �

Uj , which is tantamount to coarse graining continuous surjective maps (:arrows)
between their respective fintoposets, fji : Pj −→ fi (9). With respect to these
arrows, and with appendix B as a guide, we first define coarse graining finsieves
Si ≡ SUi

covering each and every object (:fincover Ui) in
←−
U i ,33 and from these we

also define coarse graining finsieves Sji covering each and every arrow fji ∈ ←−
U i .

With Si and Sji in hand (∀Ui , fji ∈ ←−
U i , i ∈ I ), we then define a Gothendieck

topology JI on
←−
U i , thus converting it to a site: (

←−
U i , JI ).34 Parenthetically, as

briefly alluded to earlier, the central projective limit result of Sorkin about
←−
P

(10), may now be literally understood as the ‘convergence’ of the cofinal system←−
U i of finitary coverings, at the limit of their infinite topological refinement, to
X relative to the Grothendieck-type of topology JI (or the Grothendieck basis
(Bi)i∈I ) imposed on it.

To unveil the GT-like character of DTf cq , now that the net
←−
U i of base spaces

of its objects (:fintriads) has been Grothendieck-topologized, is fairly straightfor-
ward. We simply recall that DTf cq is a category of finsheaves of incidence algebras
over Sorkin’s fintoposets (:fintriads) deriving from the Uis in the Grothendieck net←−
U i ; hence, it is a finitary example of a GT (:a category of sheaves over a site).
Moreover, because the inverse limit space of the Pis is effectively (i.e., modulo

32 Note in this respect that Shv0(X) may indeed be thought of as a GT if we recall from above that
(PO(X), J )—or equivalently, (PO(X),BJ )—is a site. At the same time, Shv0(X) is a typical
example of an ET as well (MacLane and Moerdijk, 1992).

33 Si := {Uj ∈ ←−
U i : Uj � Ui}.

34 In fact, the covering coarse graining finsieves defined above determine (object and arrow-wise) a
basis Bi for JI (see Appendix B. As noted before, we think of (

←−
U i , JI ) and (

←−
U i ,Bi )i∈I as being

equivalent sites.
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Hausdorff reflection) homeomorphic to X, and with our original regarding fin-
sheaves as finitary approximations of C0

X (for X a topological manifold), we may
think of DTf cq as a ‘fat’ of (the EGT) Shv0(X)—the category of sheaves of (rings
of) continuous functions over the C0-manifold X.

DDTT f cq is Coherent and Localic. At this point it is important to throw in this
presentation some technical remarks in order to emphasize that DTf cq is mani-
festly (i.e., by construction) finitely generated; hence, in a finitary sense, coherent
(MacLane and Moerdijk, 1992). Moreover, by the way finsheaves were defined in
Raptis (2000b) (i.e., as ‘skyscraper’-like, fat/coarse étale spaces over the coarse,
blown-up ‘points’ of X corresponding to the minimal open sets/nerves covering
them relative to a locally finite cover Ui of X),35 DTf cq has enough points and it
is localic (MacLane and Moerdijk, 1992). Indeed, its underlying locale Loc36 is
just the lattice of open subsets of X, while the points of X are recovered (mod-
ulo Hausdorff reflection) at the projective limit of infinite refinement of the base
Uis (or their associated Pis) of the fintriads as we go along the coarse graining
Grothendieck-type of sieve topology on DTf cq .37

We can thus exploit the said ‘localicality’ of DTf cq in order to find out what
is its subobject classifier �f cq . We do this next.

4.2. The Subobject Classifier in the EGT DDTT f cq

That DTf cq is localic points to a way towards its subobject classifier. One may
think of the base spaces of the fintriads in DTf cq as ‘finitary locales’ (finlocales)
since, as noted earlier, they are the ‘pointless’ subtopologies τi of X generated by
arbitrary unions of finite intersections of the open sets in each locally finite open
cover Ui of X. We also noted that DTf cq can be regarded as a ‘fat’ of Shv0(X).38

The generic object in the latter is C0
X—the sheaf of continuous functions on the

pointed topological manifold X. When X is Grothendieck-topologized and turned
into a site as described earlier, C0

(PO,J ) is a sheaf on a site and hence Shv0(PO, J )
the canonical example of an EGT (MacLane and Moerdijk, 1992).

35 Indeed, as noted before, in Sorkin’s work the points of X were substituted by
Ui∼-equivalence classes

(and X by the corresponding Pis).
36 A locale is a complete distributive lattice, otherwise known as a Heyting algebra. Locales are usually

thought of as ‘pointless topological spaces.’ It is a general result that every GT has an underlying
locale (MacLane and Moerdijk, 1992).

37 In the general case of an abstract coherent topos, there is a celebrated result due to Deligne stipulating
roughly that every coherent topos has enough points and its underlying locale is a topological space
proper (MacLane and Moerdijk, 1992).

38 In this respect there is an intended metaphorical pun between the acronym ‘fat’ (:finitary approxima-
tion topos) and the epithet ‘fat’. Indeed, the Grothendieck fintopos DTf cq associated with Sorkin’s
finitarities comes from substituting X’s points by fat, coarse open regions about them (and hence
the pointed X by the pointless finlocales τi ).
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Now, a central result in topos theory is the following: for any sheaf on a site
X, the lattice Loc of all its subsheaves is a complete Heyting algebra, a locale.39

Thus, in our case we just take C0
X (which is a generic object in Shv0(X)) for

the said ‘sheaf-on-a-site,’ and the finsheaves (in the fintriads) for its subsheaves
(:subobjects). Plainly then, the subobject classifier � in DTf cq is

�(DTf cq ) = Loc(C0
X) ≡ Loc

(
C0

(PO(X),J )

)
(15)

hence DTf cq is a localic topos, as anticipated above. In terms of covering sieves
in the standard case of a topological space X like ours (again, regarded as a poset
category PO(X), with objects its open subsets U ), we borrow verbatim from
MacLane and Moerdijk (1992)40 that “for sheaves on a topological space with the
usual open cover topology, the subobject classifier is the sheaf � on X defined
by: �(U ) = {V | V is open and V ⊂ U},” or in terms of covering (:principal)
sieves S↓ of lower sets for every V as above (i.e., S↓(V ) := {V ′ | V

′ ⊆ V }),
“�(U ) = {S↓(V )}” (cf. Appendix B).

Interpretational Matters: The Semantic Interplay Between Geometry and
Logic in a Topos. One of the quintessential properties of a topos like Shv0(X)
(for X a C0-manifold)—one that distinguishes it from the topos Set of ‘constant
sets’ (MacLane and Moerdijk, 1992)—is that its subobject classifier is a complete
Heyting algebra, in contradistinction to the Boolean topos Set whose subobject
classifier � is the Boolean binary alternative 2 = {0, 1}. This inclines one to
‘geometrically’ interpret the former topos, in contradistinction to Set, as ‘a gen-
eralized space of continuously variable sets, varying continuously with respect to
the background continuum X’ (Lawvere, 1975; MacLane and Moerdijk, 1992).
In the same semantic vain, we may interpret the variation of the objects living
in DTf cq (:qausets (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2005; Mallios
and Raptis, 2004)) as entities varying with (topological) coarse graining.

At the same time, every topos like Shv0(X) has not only a geometrical, but
also a logical interpretation due to the non-Boolean character of its subobject
classifier. Indeed, as noted before, � can also be regarded as a generalized truth-
values object, the generalization being the transition from the Boolean truth values
� = 2 = {0, 1} = {�,⊥} in Set, to a Heyting algebra-type of subobject classifier
like the one in DTf cq . This means that the so-called ‘internal language’ (or logic)
that can be associated with such topoi is (typed and) intuitionistic, in contrast to
the ‘classical,’ Boolean logic of the topos Set of sets (MacLane and Moerdijk,
1992; Lambek and Scott, 1986).

39 See theorem on page 146 in MacLane and Moerdijk (1992).
40 Page 140.
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In the last section we shall entertain the idea of exploring this close connection
between geometry and logic in our particular case of interest (:DTf cq ), and we
shall briefly pursue its physical implications and potential import to QG research.

However, for the time being, in the last paragraph of the present section
we would like to give an ADG-based topos-theoretic presentation of topological
refinement, which played a key role above in viewing DTf cq as a GT-like structure.

Finitary Differential Geometric Morphisms: Topological Refinement as a
Natural Transformation from the Differential Geometric Standpoint of ADG.
Regarding the differential geometric considerations that come hand in hand with
ADG, since the fintriads encode not only topological, but also differential geo-
metric structure, we may give a differential geometric flavor to Sorkin’s purely
topological acts of refinement in

←−
U i and/or

←−
P.

We may recall from Section 2 that, from a general topos-theoretic van-
tage, a continuous map f : X −→ Y between two topological spaces gives
rise to a pair GMf = (f∗, f ∗) of covariant adjoint functors between the re-
spective sheaf categories (:topoi) ShvX and ShvY on them, called push-out
(alias, direct image) and pull-back (alias, inverse image). In topos-theoretic jar-
gon, GM is known as a geometric morphism. In our case of interest (:DTf cq),
the continuous surjection fji : Pj −→ Pi (equivalently regarded as the map
fji : τj −→ τi) corresponding to topological coarse graining (or equivalently, to
covering refinement Ui � Uj ), induces via the Sorkin-Papatriantafillou scenario a
pair GMfji

≡ GMji = (fji∗, f ∗
ji) of fintriad morphisms between the fintriads Ti

and Tj . GMji by definition (of differential triad morphisms) preserves the dif-
ferential structure encoded in the finsheaves (of incidence algebras) comprising
the corresponding fintriads, thus it may be called finitary differential geometric
morphism. Thus, DTf cq may be perceived as a category whose objects are Tis and
whose arrows are GMjis. The latter give a differential geometric slant to Sorkin’s
purely topological acts of refinement.

Furthermore, since the sheaves defining the fintriads are themselves func-
tors41 the functors (fji∗, f ∗

ji) between the general sheaf categories (of sets)
Shvτi

≡ Shvi � Ti and Shvτj
≡ Shvj � Tj may be thought of as natural

transformations, and hence DTf cq as a type of functor category (MacLane and
Moerdijk, 1992). In summa, Sorkin’s topological refinement may be understood
in terms of ADG as a kind of natural transformation of a differential geometric
character—we may thus coin it ‘differential geometric refinement.’

41 Every sheaf (of any structures, e.g., sets, groups, vector spaces, rings, modules etc.) on a topological
space may be identified with the (associated) sheafification functor between the respective categories
(e.g., from the category of topological spaces to that of groups) that produces it (Mallios, 1998a;
MacLane and Moerdijk, 1992).
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4.3. Functoriality: General Covariance is Preserved Under Refinement

Differential geometric refinement has a direct application and physical inter-
pretation in ADG-gravity. In Mallios and Raptis (2003); Raptis (2005); Mallios and
Raptis (2004) we saw how the Principle of General Covariance (PGC) of GR can be
expressed categorically in ADG-theoretic terms as the A-functoriality of the vac-
uum Einstein equations (6) or its finitary analogue (12). This means that (6) is ex-
pressed via the curvature R, which is an A-morphism or A-tensor (where ⊗A is the
homological tensor product functor with respect to A). The physical significance
of the A-functoriality of the ADG-theoretic vacuum gravitational dynamics is that
our choice of field-measurements or field-coordinatizations encoded in A (in toto,
our choice of A), does not affect the field dynamics.42 More familiarly, the ADG-
analogue of the Diff(M)-implemented PGC of the differential manifold M based
GR, is AutAE—the principal (group) sheaf of field automorphisms. Since E is by
definition locally coordinatized (‘Cartesianly analyzed’) into A,43 AutAE |U⊂X :=
EndE(U )• = Mn(A)

•
(U ) ≡ GL(n, A)(U ) ≡ GL(n, A(U )), and the ADG-version

of the PGC is (locally) implemented via GL(n, A)(U ) ≡ GL(n, A(U ))—the (lo-
cal) ‘A-analogue’ of the usual GL(4, R) of GR standing for the group of general
(local) coordinates’ transformations.

Now, in Raptis (2005); Mallios and Raptis (2004) it was observed that the
said generalized coordinates’ A-independence (:A-functoriality) of the ADG-
gravitational field dynamics has a rather natural categorical representation in
terms of natural transformations (pun intended). Diagrammatically, this can be
represented as follows:

T2 A2(: E2
loc

An
2 ) R(E2) = 0⊗A2

T1 A1(: E1
loc

An
1 ) R(E1) = 0

⊗A1

NA ND

and it reads that, changing (via the natural transformation N) structure sheaves
of algebras of generalized arithmetics (coordinates) from an A1 (and its

42 In turn, in Mallios and Raptis (2003); Raptis (2005) and especially in Mallios and Raptis (2004),
this A-functoriality of the field dynamics was taken to support the ADG Principle of Field Realism
(PFR): the connection field D, expressed and partaking into the gravitational dynamics (6) via its
curvature, is not ‘perturbed’ by our measurements/coordinatizations in A.

43 Recall from Section 2 that E is defined as a locally free A-module of finite rank: E :
loc.� An.



718 Raptis

corresponding E1) to another A2 (and hence E2), the functorially, ⊗A-expressed
(via the connection’s curvature A-morphism) vacuum Einstein equations remain
‘form invariant.’44

The upshot here is that, the differential geometric refinement in DTf cq de-
scribed above may be perceived as such a natural transformation-type of map
(:finitary differential geometric morphism), as follows:

Ti Ai(: Ei
loc

An
i ) Ri(Ei) = 0⊗Ai

Tj Aj(: Ej
loc

An
j ) Rj(Ej) = 0

⊗Aj

NjiA ≡ GMjiA NjiD ≡ GMjiD

Thus, the ADG-version of the PGC of GR (:A-functoriality) is preserved under
such a not only topological, but also differential geometric, refinement. It is pre-
cisely this result that underlies the inverse system

←−
E of vacuum Einstein equations

and its continuum projective limit in the tower of inverse/direct systems of var-
ious finitary ADG-structures in expression (150) of Mallios and Raptis (2003)
and/or (25) of Raptis (2005). In the latter paper especially, it is the projective limit
of

←−
E that was used to argue that the vacuum Einstein equations hold over the

inner Schwarzschild singularity of the gravitational field of a point-particle both
at the finitary (‘discrete’) and at the classical continuum inverse limit of infinite
refinement (of the underlying base fintoposets of the fintriads involved).

5. EPILOGUE CUM SPECULATION: FOUR FUTURE QG PROSPECTS

In this rather lengthy concluding section we elaborate on the following four
promising future prospects. First, on how one might further build on the EG-
fintopos so as to incorporate ‘quantum logical’ ideas into our scheme. Then, we
ponder on potential affinities between our ADG-based finitary EGT DTf cq and,
(i) Isham’s recent ‘quantizing on a category’ scenario, (ii) Christensen-Crane’s
recent causite theory, and (iii) Kock-Lawvere’s SDG.

44 Parenthetically, note in the diagram above that N has two indices: one for the ‘object’ (:structure
sheaf A), and one for the ‘morphism’ (:connection D, or better, its A-morphism curvature R) in
the respective differential triads T1 and T2 supporting them. By definition, a natural transformation
between such sheaf (:functor) categories, is a functor that preserves objects (:sheaves) and their
morphisms (:connections and their curvatures).
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5.1. Representation Theory: Associated Hilbert Fintopos H f cq

As noted earlier, by now it has been appreciated (primarily by mathemati-
cians!) that a topos can be regarded both as a generalized space in a geometrical
(e.g., topological) sense, as well as a generalized logical universe of variable
set-like entities. Thus, in a topos, ‘geometry’ and ‘logic’ are thought of as being
unified [45].

In our case, in view of this geometry-logic unification in a topos, a future
prospect for further developing the theory is to relate the (differential) geometric
(:‘gravitational’) information encoded in the fintopos DTf cq , to the (internal) logic
of an ‘associated Hilbert fintopos’ Hf cq . The latter may be obtained from DTf cq

in three steps:

1. From Aigner (1997); Stanley (1986); Zapatrin (1998) first invoke finite di-
mensional (irreducible) Hilbert space Hi matrix representations for every
incidence algebra �i dwelling in the stalks of every finsheaf �i .

2. Then, like the corresponding incidence algebras were stacked into the
finsheaves �i , group the His into associated (Vassiliou, 2000, 2005)
(:representation) Hilbert finsheaves Hi (again over Sorkin’s fintoposets,
which are subject to topological refinement).

3. Finally, organize the His into the fintopos Hf cq as we did for the �is in
DTf cq , which may be fittingly coined the Hilbert fintopos associated to
DTf cq .

What one will have effectively obtained in the guise of Hf cq is a coarse graining
presheaf of Hilbert spaces (:a presheaf of Hilbert D-modules (Douglas, 1989;
Kato, 1991, 2003; Kato and Struppa, 1999)) over the topological refinement
poset category

←−
P (or

←−
U i). To see this clearly, one must recall from Raptis and

Zapatrin (2000, 2001); Zapatrin (2001a) that the correspondence Pi −→ �i is a
contravariant functor from the poset category

←−
P and the continuous (:monotone)

maps (:fintoposet morphisms) fji between the Pis, to a direct (:inductive) system−→
� of finitary incidence algebras and surjective algebra homomorphisms ωji be-
tween them. Such a contravariant functor may indeed be thought of as a presheaf
(MacLane and Moerdijk, 1992).45

A ‘Unified’ Perspective on Geometrical and Logical Obstructions. The pair
(DTf cq,Hf cq ) of fintopoi may provide us with strong clues on how to unify the
‘warped’ (gravitational) geometry and the ‘twisted’ (quantum) logic in a topos-
theoretic setting. In this respect, the following analogy between the two topoi in
the pair above is quite suggestive:

45 This remark will prove to be useful in the next subsection.
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• As we saw in Mallios and Raptis (2001, 2002, 2003), the finsheaves �i

in DTf cq admit non-trivial (gravitational) connections Di , whose curva-
ture Ri(Di) measures some kind of obstruction preventing the following
sequence of generalized differentials (:connections)

�0(E)
D≡D0−→ �1(E)

D1−→ �2(E)
D2−→ �3(E)

D3−→ · · ·
· · · Di−1−→ �i(E)

Di−→ �i+1(E)
Di+1−→ · · ·

(16)

from being exact. This is in contrast to the usual de Rham complex

0(≡ �−2)
ı≡d−2−→ K(≡ �−1)

ε≡d−1−→ A(≡ �0)
d0≡∂−→ �1 d1≡d−→ �2 d2−→ · · · �n dn−→ · · ·

(17)

which is exact in our theory (:finitary de Rham theorem) (Mallios and
Raptis, 2002). In other words, the curvature R of the connection D mea-
sures the departure of the latter from flatness, as opposed to ∂ which is
flat.46 Equivalently, in topos-theoretic parlance, the finsheaves in DTf cq

do not have global elements (:sections) (MacLane and Moerdijk, 1992).47

In DTf cq , absence of global sections of its curved finsheaves is captured
by the non-existence of arrows from the terminal object 1 in the topos to the
said finsheaves. In ADG-theoretic terms (Mallios, 1998a,b; Mallios and
Raptis, 2002), section-wise the obstruction (:departure from exactness) of
the D-complex above due to R(D), may be expressed via the non-triviality
of the ‘global section functor’ and of the complex

�X(S ·
) : �X(0) −→ �X(S0)

�X(d0)−→ �X(S1)
�X(d1)−→ · · ·

· · · �X(dn−1)−→ �X(Sn−1)
�X(dn)−→ �X(Sn) �−→ · · · 0

(18)

that it defines (Mallios, 1998a,b; Mallios and Raptis, 2002). Again, this is
a fancy way of saying that the relevant vector (fin)sheaves (Sj

i ≡ �
j

i , j ∈
Z+) do not admit global sections due to the non-triviality of D. All this has
been physically interpreted as absence of global ‘inertial’ frames (:‘inertial
observers’) in ADG-fingravity (Mallios and Raptis, 2001).

• In a similar vain, but from a quantum logical standpoint, the associated
Hilbert differential module finsheaves Hi do not admit global sections
(:‘valuation states’)48 in view of the Kochen-Specker theorem in stan-
dard quantum logic (Butterfield and Isham, 1998, 1999; Butterfield et al.,

46 For example, section-wise in the relevant finsheaves: (Dj+1
i ◦ Dj

i )(s ⊗ t) = t ∧ Ri (s), with s ∈
�(U,�i ), t ∈ �(U,�j) and U open in X. Thus, Ri (Di ) represents not only the measure of the
departure from differentiating flatly, but also the deviation from setting up an (exact) cohomology
sequence based on Di—altogether, a measure of the departure of Di from (the) nilpotence (of ∂i ).

47 Page 164.
48 For dim Hi > 2.
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2000; Butterfield and Isham, 2000). This is due to the well known fact
that there are maximal Boolean subalgebras (:frames) of the the quantum
lattice Li(Hi) that are generated by mutually incompatible (:complemen-
tary, noncommuting) elements of B(Hi)—the non-abelian C∗-algebra of
bounded operators on Li (whose hermitian elements are normally taken
to represent quantum observables). The result is that certain presheaves
(of sets) over the coarse graining poset of Boolean subalgebras of Li(Hi)
do not admit global sections. Logically, this is interpreted as saying that
there are no global (Boolean) truth values in quantum logic, but only local
ones (i.e., ‘localized’ at every maximal Boolean subalgebra or frame of
Li(Hi)); moreover, the resulting ‘truth values’ space (:object) � in the
corresponding presheaf topos ceases to be Boolean (:� = 2) and becomes
intuitionistic (:a Heyting algebra). In this sense, quantum logic is contex-
tual (:‘Boolean subalgebra localized’) and ‘neorealist’ (:not Boolean like
the classical logic of Set, but intuitionistic). Accordingly, in the afore-
said tetralogy of Isham et al., it has been explicitly anticipated that there
must be a characteristic form that, like Ri(Di) above, effectuates the said
obstruction to assigning values to physical quantities globally over Li .

• Thus, what behooves us in the future is to look for what one might call a
‘quantum logical curvature’ characteristic form R which measures both
the (differential) geometrical obstruction in DTf cq to assigning global
(inertial) frames at its finsheaves �i , and the quantum logical obstruction
to assigning global (Boolean) frames to their associated Hilbert finsheaves
Hi . This effectively means that one could attempt to bring together the
intuitionistic (differential) geometric coarse graining in DTf cq , with the
also intuitionistic (quantum) logical coarse graining in Hf cq .

One might wish to approach this issue of logico-geometrical obstructions in
a unified algebraic way. For instance, one could observe that both the differen-
tial geometric obstruction (in GR) and the quantum logical obstruction (in QM)
above are due to some non-commutativity in the basic ‘variables’ involved, in the
following sense:

• the differential geometric obstruction, represented by the curvature char-
acteristic form, is due to the non-commutativity of covariant derivations
(:connections); while,

• the quantum logical obstruction is ultimately due to the existence of non-
commuting (complementary) quantum observables such as position (:x)
and momentum (:∂x).

Parenthetically, we note in this line of thought that for quite some time now the
idea has been aired that the ‘macroscopic’ non-commutativity of covariant deriva-
tives in the curved spacetime continuum of GR is due to a more fundamental
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‘microscopic’ quantum non-commutativity in a ‘discrete,’ dynamical quantum
logical (:‘quantal’) substratum underlying it.49 For instance, in Selesnick (1991,
1994, 1995, 2004) one witnesses how the gravitational curvature form of a spin-
Lorentzian (:SL(2, C)-valued) connection arises ‘spontaneously’ (as a coherent
state condensate) from a Schwinger-type of dynamical variational principle of ba-
sic bivalent spinorial quantum-time atoms (:‘chronons’) teeming the said reticular
and quantal substratum coined the ‘quantum net’ (Finkelstein, 1988, 1989, 1991,
1996). In this model we can quote Finkelstein from the prologue of Finkelstein
(1996) maintaining that “logics come from dynamics.” For similar ideas, but in a
topos-theoretic setting, see Raptis (1996).

On the other hand, in ADG-gravity there is no such fundamental distinction
between a (classical) continuum and a (quantal) discretum spacetime. All there
exists and is of import in the theory are the algebraic (dynamical) relations be-
tween the ADG-fields (E,D) themselves, without dependence on an external (to
those fields) surrogate background space(time), be it ‘discrete/quantal’ or ‘contin-
uous/classical’ (Mallios and Raptis, 2001, 2002, 2003, 2004; Raptis, 2005). Thus
in our ADG-framework, if we were to investigate deeper into the possibility that
some sort of quantum commutation relations are ultimately responsible for the
aforementioned obstructions, we should better do it ‘sheaf cohomologically’—
i.e., in a purely algebraic manner that pays respect to the fact that ADG is not
concerned at all with the geometrical structure of a background spacetime, but
with the algebraic relations of the ‘geometrical objects’ that live on that physically
fiducial base. The latter are nothing else than the connection fields D and the
sections of the relevant sheaves E that they act on, while at the same time sheaf
cohomology is the technical (:algebraic) machinery that ADG employs from the
very beginning of the aufbau of the theory (Mallios, 1998a,b, 2005b; Mallios and
Raptis, 2002).

We thus follow our noses into the realm of the ADG-perspective on geo-
metric (pre)quantization and second quantization (Mallios, 1998a,b, 1999, 2004;
Mallios and Raptis, 2002; Mallios, 2005b) in order to track the said obstructions
in (DTf cq,Hf cq) down to algebraic, sheaf cohomological commutation relations.
What we have in mind is to propose some sheaf cohomological commutation
relations between certain characteristic forms that uniquely characterize the fin-
sheaves (and the connections acting on them) in the fintopos DTf cq ; while, by
the functoriality of geometric pre- and second quantization à la ADG (Mallios,
2001, 2005b, 1999, 2004; Mallios and Raptis, 2002), to transfer these character-
istic forms and their algebraic commutation relations to their associated Hilbert
finsheaves in Hf cq .

The following discussion on how we might go about and set up the envisaged
sheaf cohomological commutation relations is tentative and largely heuristic.

49 David Finkelstein in private e-mail correspondence (2000).
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One can begin by recalling some basic (‘axiomatic’) assumptions in ADG-
field theory (Mallios, 1998a,b; Mallios and Raptis, 2002, 2003, 2004):

• The fields (viz. connections) D exist ‘out there’ independently of us—the
observers or ‘measurers’ of them (Principle of Field Realism in Mallios
and Raptis (2003, 2004)). Recall from Section 2 that in ADG-field theory,
by a field we refer to the pair (E,D). The connection D is the ‘proper’ part
of the field, while the vector sheaf E is its representation (alias, carrier or
action) space.

• Various collections Ui of covering open subsets of the base topological
space X are the systems of local open gauges.

• Our measurements (of the fields) take values in the structure sheaf A of
generalized arithmetics (coordinates or coefficients) that we choose in the
first place, with A(U ) (for a U in some Ui chosen) the local coordinate
gauges that we set up for (i.e., to measure) the fields.

• From a geometric pre- and second quantization vantage (Mallios, 1998b,
1999, 2004; Mallios and Raptis, 2002, 2003; Mallios, 2005b), our field-
measurements correspond to local (particle) coordinatizations of the fields.
They are the ADG-analogues of ‘particle position measurements’ of the
fields. Local position (particle) states are represented by local sections of
the representation (:associated) sheaves E ,50 which in turn are by definition
locally (AU -) isomorphic to An (i.e., E(U ) ≡ E |U � (A(U ))n ≡ (A|U )n).
Accordingly, given a local gauge U in a chosen gauge system Ui , the
collection eU = {(U ; e1, . . . , en)} of local sections of E on U is called a
local frame (or local gauge basis) of E . Any section s ∈ �(U, E) ≡ E(U )
can be written as a linear combination of the eαs above, with coefficients
in A(U ).

• As noted before, E is the carrier or action space of the connection. D acts
on the local particle (coordinate-position) states (i.e., the local sections) of
E and changes them. Thus, the (flat) sheaf morphisms ∂ , and in extenso the
curved ones D, are the generalized (abstract), ADG-theoretic analogues of
momenta.

With these abstract semantic correspondences:

1. abstract position/particle states −→ local sections of E
2. abstract momentum/field states −→ local expression of D (19)

we are in a position to identify certain characteristic forms that could engage into
the envisaged (local) quantum commutation relations (relative to a chosen family
U of local gauges):

50 Furthermore, with respect to the spin-statistics connection, local boson states are represented by
local sections of line sheaves (:vector sheaves of rank 1), while fermions by local sections of vector
sheaves of rank greater than 1 (Mallios, 1998a,b, 1999, 2004; Mallios and Raptis, 2002, 2003).
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1. Concerning the abstract analogue of ‘particle/position’ (:the part E of
the ADG-field pair (E,D)), we might consider the so-called coordinate
1-cocycle φαβ ∈ AutE = GL(n, A(Uαβ)) = GL(n, A)(Uαβ ) (for Uαβ =
Uα ∩ Uβ ; Uα,Uβ ∈ U), which completely characterizes (and classifies)
sheaf cohomologically the vector sheaves E (Mallios, 1998a,b; Mallios
and Raptis, 2002; Mallios, 2005b).51 What we have here is an instance
of the age-old Kleinian dictum that local states (:‘geometry’) of E—i.e.,
the (local) sections that comprise it,52 are how they transform (here, under
changes of local gauge φαβ).53

2. Concerning the abstract analogue of ‘field/momentum’ (:the part D of the
ADG-field pair (E,D)), we might consider the so-called gauge potential
A of the connection D, which completely determines D locally.54 With
respect to U , Aij is (locally) a 0-cochain of (local) n × n matrices with
entries from (:local sections in) �1(U ) (U ∈ U ; n is the rank of E). In other
words, for a given system (frame) of local gauges U = (Uα)α∈I , A(α)

ij ∈
C0(U ,Mn(�) = C0(U ,�1(EndE)—i.e., A is (locally) an endomorphism
(:EndE) valued ‘1-form.’55

In line with the above, we may thus posit (locally) the following abstract
(pre)quantum commutation relations between the generalized (:abstract) ‘position
characteristic form’ φαβ and the generalized (:abstract) ‘momentum characteristic
form’ Aij :56

[φ|U ,A|U ] ∝ R ∈ EndE(U ) (20)

which make sense (i.e., they are well defined), since φ (locally) takes values in
AutE(U ) = GL(n, A)(U ), while A in EndE , which both allow for (the definition
of a Lie-type of) a product like the commutator.

51 Indeed, we read from Mallios (1998b) for example in connection with the Picard cohomological
classification of the vector sheaves involved in ADG, that “any vector sheaf E on X is uniquely
determined (up to an A-isomorphism) by a coordinate 1-cocycle, say, (gαβ ) ∈ Z1(U ,GL(n, A)),
associated with any local frame U of E .”

52 And recall the epitome of sheaf theory, namely, that a sheaf is its (local) sections. That is, the entire
sheaf space E can be (re)constructed (by means of restriction and collation) from its (local) sections.
Local information (:sections) is glued together to yield the ‘total sheaf space.’

53 Another way to express this Kleinian viewpoint, E is the associated (:representation) sheaf of the
‘symmetry’ group sheaf AutE = GL(n, A) of its self-transmutations. Equivalently, the particle
states (:local sections of E) of the field carry a representation of the symmetry group of field
automorphisms. Here, the epithet ‘symmetry’ pertains to the fact that AutE is the symmetry group
sheaf of vacuum Einstein ADG-gravity (6), implementing our abstract version of the PGC of GR.

54 Indeed, we read from Mallios (1998b) that “D is determined (locally) uniquely by A.” Recall also
that D locally splits as ∂ + A (Mallios, 1998a,b; Mallios and Raptis, 2003).

55 In this respect, one may recall that in the usual theory (CDG of smooth manifolds), the gauge
potential is (locally) a Lie algebra-valued 1-form.

56 With indices omitted.
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What behooves us now is to give a physical interpretation to the commutator
above according to the ADG-field semantics. Loosely, (20) is the relativistic and
covariant ADG-gravitational analogue of the Heisenberg uncertainty relations
between the position and momentum ‘observables’ of a (non-relativistic) quantum
mechanical particle (or, in extenso, of a relativistic quantum field). One should
highlight here a couple of things concerning (20):

• First a mathematical observation: the functoriality between DTf cq (grav-
ity; differential geometry) and Hf cq (quantum theory; quantum logic) car-
ries the characteristic forms and their uncertainty relations from the former
to the latter.

• Second, a physical observation: the ‘self-quantumness’ of the ADG-field
(E,D). As it has been stressed many times in previous work (Mallios
and Raptis, 2003; Raptis, 2005; Mallios and Raptis, 2004), the ADG-field
(E,D) is a dynamically autonomous, ‘already quantum’ and in need of no
formal process of quantization. The autonomy pertains to the fact that there
is no background geometrical spacetime (continuum or discretum) inter-
pretation of the purely algebraic, dynamical notion of ADG-field (:ADG-
gravity is a genuinely background independent theory). Moreover, the field
is ‘self-quantum’ (or ‘self-quantized’) as its two constituent parts—E and
D—engage into the quantum commutation relations (20), while its back-
ground spacetime independence entails that in our scheme quantization of
gravity is not dependent on or does not entail quantization of spacetime
itself.

• Since in ADG-gravity there is no background spacetime (continuous or
discrete) interpretation, while all is referred to the algebraic (dynamical)
relations in sheaf space, there is no spacetime scale dependence of the
ADG-expressed law of vacuum Einstein gravity (6), or of the commutator
(20). Recalling from the introduction our brief remarks about the ‘conspir-
acy’ of the equivalence principle of GR and the uncertainty principle of
QM, which apparently prohibits the infinite localization of the gravitational
field past the so-called Planck space-time length-duration without creating
a black hole; by contrast, in ADG-gravity the Planck space-time is not
thought of as a fundamental ‘obstruction’—an unavoidable regularization
cut-off scale—to infinite localization beyond which the classical continuum
spacetime gives way to a quantal discretum one. As noted in Mallios and
Raptis (2003, 2004); Raptis (2005), the vacuum Einstein equations hold
both at the classical continuum (6) and at the quantal discontinuum level
(12), and they are not thought of as breaking down below Planck scale.

• If any ‘noncommutativity’ is involved in ADG-gravity (say, à la Connes
(Connes, 1994)), it is encoded inAutE (‘field foam’ (Mallios and Rosinger,
2001)), or anyway, in EndE where φ and A take their values. That is, in our
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scenario, if any kind of ‘noncommutativity’ is involved, it pertains to the
dynamical self-transmutations of the field (:D) and its ‘inherent’ quantum
particle states (:local sections of E) (Mallios and Raptis, 2004).57

• Since the sheaf cohomological quantum commutation relations (20) are
preserved by topological (or differential geometric) refinement and are
carried intact to the ‘classical continuum limit’ (Raptis and Zapatrin,
2000, 2001), we may interpret the usual (differential geometric) curva-
ture obstruction (in DTf cq) as some kind of ‘macroscopic quantum effect’
(coming from Hf cq ), like Finkelstein has intuited for a long while now.58

5.2. Potential Links with Isham’s Quantizing on a Category

A future project of great interest is to relate our fintopos-theoretic labors
on ADG-fingravity above with Isham’s recent ‘Quantizing on a Category’ (QC)
general mathematical scheme (Isham, 2003b, 2004a,b, 2005).

On quite general grounds, the algebraico-categorical QC is closely akin to
ADG both conceptually and technically, having affine basic motivations and aims.
For example, QC’s main goal is to quantize systems with configuration (or his-
tory) spaces consisting of ‘points’ having internal (algebraic) structure. The main
motivation behind QC is the grave failure of applying the conventional quantization
concepts and techniques to ‘systems’ (e.g., causets or spacetime topologies) whose
configuration (or general history) spaces are far from being structureless-pointed
differential (:smooth) manifolds. Isham’s approach hinges on two innovations:
first it regards the relevant entities as objects in a category, and then it views the
categorical morphisms as abstract analogues of momentum (derivation maps) in
the usual (manifold based) theories. As it is also the case with ADG, although this
approach includes the standard manifold based quantization techniques, it goes
much further by making possible the quantization of systems whose ‘state’ spaces
are not pointed-structureless smooth continua.

As hinted to above, there appear to be close ties between QC and ADG-
gravity—ties which ought to be looked at closer in the future. Prima facie, both
schemes concentrate on evading the (pathological) point-like base differential
manifold—be it the configuration space of some classical or quantum physi-
cal system, or the background spacetime arena of classical or quantum (field)
physics—and they both employ ‘pointless,’ categorico-algebraic methods. Both
focus on an abstract (categorical) representation of the notion of derivative or
derivation: in QC Isham abstracts from the usual continuum based notion of

57 Recall that in ADG-gravity the PGC of GR is modelled after AutE , while from a geometric
prequantization viewpoint, the local quantum particle states of the ADG-gravitation field (:the local
sections of E) are precisely the ones that are ‘shuffled around’ by AutE—the states on which D
acts to dynamically change.

58 See footnote 46 above.
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vector field (derivation), to arrive at the categorical notion of arrow field which
is a map that respects the internal structure of the categorical objects one wishes
to focus on (e.g., topological spaces or causets); while in our work, the notion of
derivative is abstracted and generalized to that of an algebraic connection, defined
categorically as a sheaf morphism, on a sheaf of suitably algebraized structures
(e.g., causets or finitary topological spaces and the incidence algebras thereof).

A key idea that could potentially link QC with our fintopos DTf cq for
ADG-fingravity (and with ADG in general) is that in the former, as a result of a
formal process of quantization developed there, a presheaf of Hilbert spaces (of
variable dimensionality) arises as a ‘induced representation space’ of the so-called
‘category quantization monoid of arrow-fields’ defined by the arrow-semigroup
of the base category C that one chooses to work with.59 The crux of the argument
here is that this presheaf is similar to the coarse ‘graining Hilbert presheaf’ that the
associated (:representation) Hilbert fintopos Hf cq was seen to determine above.
This similarity motivates us to wish to apply Isham’s QC technology to our
particular case of interest in which the base category is DTf cq and the arrows
between them the coarse graining fintriad geometric morphisms, taking also into
account the internal structure of the finsheaves involved. In this respect, perhaps
also the sheaf cohomological quantization algebra envisaged above can be related
to the category (monoid) quantization algebras engaged in QC. All in all, we
will have in hand a particular application of Isham’s QC scenario to the case of
our ADG-perspective on Sorkin’s fintoposets, their incidence algebras, and the
finsheaves (:fintriads) thereof in DTf cq .

5.3. Potential Links with the Christensen-Crane Causites

As noted in the introduction, recently there has been a Grothendieck
categorical-type of approach to quantum spacetime geometry and to non-
perturbative Lorentzian QG called causal site (:causite) theory (Christensen and
Crane, 2004). Causite theory bears a close resemblance in both motivation and
technical (:categorical) means employed with our f cqv-ADG-gravity—in partic-
ular, with the present topos-theoretic version of the latter. Here are some common
features:

• Both employ general homological algebra (:category-theoretic) ideas and
techniques. Causite theory may be perceived as a ‘categorification’ and
quantization of causet theory, while our scheme may be understood as the
‘sheafification’ and (pre)quantization of causets.

59 Roughly, as briefly mentioned above, the objects of C in Isham’s theory represent generalized
(:abstract) ‘configuration states,’ while the transformation-arrows (:morphisms) between them, ana-
logues of momentum (:derivation) maps.
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• In both approaches, simplicial ideas and techniques are central. In causite
theory there are two main structures, both of which are modelled after par-
tial orders: the topological and the causal. The relevant categorical struc-
tures of interest are bisimplicial 2-categories. As a result, the Grothendieck-
type of topos structure envisaged to be associated with (pre)sheaves (of
Hilbert spaces) over causites is a 2-topos (:bitopos). In our approach on
the other hand, the causal and topological structures of the world are
supposed to be physically indistinguishable, hence they ‘collapse’ into a
single (simplicial) partial order. This subsumes our main position that the
physical topology is the causal topology (Mallios and Raptis, 2001). As a
result, the fintopos DTf cq-organization of the finsheaves of qausets over
Sorkin’s finsimplicial complexes (:fintoposets) accomplished herein is a
Grothendieck-type of ‘unitopos,’ not a bitopos.

• We read from Christensen and Crane (2004): “A very important feature
of the topology of causal sites is that they have a tangent 2-bundle, which
is analogous to the tangent bundle of a manifold.” In the purely algebraic
ADG-gravity, we are not interested in such a geometrical interpretation and
conceptual imagery (:base spacetime, tangent space, tangent bundle etc).
Presumably, one would like to have a tangent bundle-like structure in one’s
theory in order to identify its sections with ‘derivation maps,’ thus have
in one’s hands not only topological, but also differential structure. Having
differential geometric structure on causites, then one would like “to impose
Einstein’s equation” (as a differential equation proper!) “on a causal site
purely intrinsically”. Moreover, in Christensen and Crane (2004) it is
observed that, in general, “doing sheaf theory over such generalized spaces
(:sites) is an important part of modern mathematics.” In ADG-fingravity,
we do most (if not all) of the above entirely algebraically, a fortiori without
any geometrical commitment to a background ‘space(time)’—be it discrete
or continuous.

• Last but not least, both approaches purport to be inherently finitistic and
hence ab initio free from singularities and other unphysical infinities. The
ultimate aim (or hope!) of causite theory is to “lead to a description
of quantum physics free from ultraviolet divergences, by eliminating the
underlying point set continuum” (Christensen and Crane, 2004). So is
ADG-gravity’s (Mallios and Raptis, 2001, 2002, 2003, 2004; Raptis, 2005).

It would certainly be worthwhile to investigate closer the conceptual and technical
affinities between causite theory and f cqv-ADG-gravity.60

60 Louis Crane in private e-correspondence.
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5.4. Potential Links with Kock-Lawvere’s SDG

From a purely mathematical perspective, but with applications to QG also in
mind, it would be particularly interesting to see how can one carry out under the
prism of our EG-fintopos DTf cq the basic finitary, ADG-theoretic constructions
internally in the said fintopos by using the ‘esoteric,’ intuitionistic-type of language
(:logic) of this topos exposed in this paper. For example, by stepping into the
constructive world of the topos, one could bypass the ‘problem’ (because A-
functoriality-violating) of defining derivations in ADG.61 En passant, as briefly
alluded to in footnote 4 and in the previous subsection, the reader will have
already noticed that no notion of ‘tangent vector field’ is involved in ADG—
i.e., no maps in Der : A −→ A are defined, as in the classical geometrical
manifold based theory (CDG). Loosely, this can be justified by the fact that in the
purely algebraic ADG the (classical) geometrical notion of ‘tangent space’ to the
(arbitrary) simply topological base space X involved in the theory, has essentially
no meaning, but more importantly, no physical significance, since X itself plays
no role in the (gravitational) equations defined as differential equations proper via
the derivation-free ADG-machinery.

Even more importantly for bringing together ADG and SDG, and having
delimited the topos-theoretic (:intuitionistic-logical) background underlying both
ADG and SDG, one can then compare the notion of connection—arguably, the
key concept that actually qualifies either theory as being a differential geometry
proper—as this concept appears in a categorical guise in both theories (Kock
and Reyes, 1979; Kock, 1981; Lavendhomme, 1996; Mallios, 1998a,b, 2005b;
Vassiliou, 1994, 1999, 2005). For the definition of the synthetic differential
(:connection) ∂ , the intuitionistic internal logic of the ‘formal smooth topoi’ in-
volved plays a central role, dating back to Grothendieck’s stressing the importance
of ‘rings with nilpotent elements’ in the context of algebraic geometry. At the same
time, for the definition of ∂ as a sheaf morphism in ADG, no serious use has so far
been made of the intuitionistic internal logic of the sheaf categories in which the
relevant sheaves live. One should thus wait for an explicit construction of those
sheaves from within (i.e., by using the internal language of) the relevant topoi.
This is a formidable task well worth exploring; for, applications’ wise, recall again
for instance from the previous subsection the following words from Christensen
and Crane (2004):

“. . . As yet, we do not know how to impose Einstein’s equation on a
causal site purely intrinsically . . . ”

On the other hand, we certainly know how to (and we actually do!) impose (6)—or
its finitary version (12)—from within the objects (:finsheaves) comprising DTf cq ,
but without having made actual use of the latter’s internal logic.

61 Chris Mulvey in private e-correspondence.
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To wrap up the present paper, we would like to recall from the conclusion of
Stachel (1993)62 the following ‘prophetic’ exchange between Abraham Fränkel
and Albert Einstein:63

“. . . In December 1951 I had the privilege of talking to Professor
Einstein and describing the recent controversies between the (neo-) in-
tuitionists and their ‘formalistic’ and ‘logicistic’ antagonists; I pointed
out that the first attitude would mean a kind of atomistic theory of
functions, comparable to the atomistic structure of matter and energy.
Einstein showed a lively interest in the subject and pointed out that to
the physicist such a theory would seem by far preferable to the clas-
sical theory of continuity. I objected by stressing the main difficulty,
namely, the fact that the procedures of mathematical analysis, e.g., of
differential equations, are based on the assumption of mathematical
continuity, while a modification sufficient to cover an intuitionistic-
discrete medium cannot easily be imagined. Einstein did not share
this pessimism and urged mathematicians to try to develop suitable
new methods not based on continuity64 . . . ”

A modern-day version of the words above, which also highlights the close affinity
between sheaf and topos theory (MacLane and Moerdijk, 1992) vis-à-vis QT and
QG, is due to Selesnick:65

“. . . One of the primary technical hurdles which must be overcome
by any theory that purports to account, on the basis of microscopic
quantum principles, for macroscopic effects (such as the large-scale
structure of what appears to us as space-time, i.e., gravity) is the han-
dling of the transition from ‘localness’ to ‘globalness.’ In the ‘classi-
cal’ world this kind of maneuver has been traditionally effected either
measure-theoretically—by evaluating largely mythical integrals, for
instance—or geometrically, through the use of sheaf theory, which,
surprisingly, has a close relation to topos theory. The failure of in-
tegration methods in traditional approaches to quantum gravity may
be ascribed in large measure to the inappropriateness of maintaining
a manifold—a ‘classical’ object—as a model for space-time, while
performing quantum operations everywhere else. If we give up this
classical manifold and replace it by a quantal structure, then the al-
ready considerable problem of mediating between local and global
(or micro and macro) is compounded with problems arising from the
appearance of subtle effects like quantum entanglement, and more
generally by the problems arising from the non-objective nature of
quantum ‘reality’ . . . ”

62 With the original citation being (Fränkel, 1954).
63 This author wishes to thank John Stachel for timely communicating (Stachel, 1993) to him. This

quotation, with an extensive discussion on how it anticipates our application of ADG-ideas to
finitistic QG, as well as the former’s potential links with SDG, can be found in Mallios and Raptis
(2004).

64 Our emphasis.
65 Steve Selesnick (private correspondence).
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Most of the discussion in this long epilogue has been highly speculative,
largely heuristic, tentative and incomplete, thus it certainly requires further elab-
oration and scrutiny. However, we feel that further advancing our theory on those
four QG research fronts in the near future is well worth the effort.

APPENDIX A: THE DEFINITION OF AN ABSTRACT
ELEMENTARY TOPOS

This appendix is used in 3.2 to show that DTf cq is a finitary example of an
ET in the sense of Lawvere and Tierney (MacLane and Moerdijk, 1992). To recall
briefly this formal and abstract mathematical structure,66 a small category67 C is
said to be an ET if it has the following properties:

• C is closed under finite limits. Equivalently, C is said to be finitely complete.
As noted earlier, categorical limits are also known as projective (inverse)
limits, thus a topos C is defined to be closed under projective limits.

• C is cartesian. That is, for any two objects A and B in C, one can form
the object A × B—their cartesian product. All such finite products are
supposed to be ‘computable’ in C (:C is closed under finite cartesian
products).

• C has an exponential structure. This essentially means that for any two
objects A,B ∈ C, one can form the object BA consisting of all arrows
(in C) from A to B. As noted earlier, the set BA is usually designated by
Hom(A,B) (:‘hom-sets of arrows’), and it is supposed to effectuate the
following canonical isomorphisms for an arbitrary object C in C relative
to the cartesian product structure: Hom(C × A,B) � Hom(C,BA) (or
equivalently: BC×A � (BA)C).

• C has a subobject classifier object �. This means that for any object A in
C, its subobjects (write sub(A)) canonically correspond to arrows from it
to �: sub(A) � Hom(A,�) ≡ �A.

A couple of secondary, ‘corollary’ properties of a topos C are:

• C is also finitely cocomplete. That is, C is also closed under finite inductive
(direct) limits. Thus in toto, a topos C is defined to be finitely bicomplete
(co-complete or co-closed).

• C has a preferred object 1, called the terminal object, over which all the
other objects in C are ‘fibered’. That is, for any A ∈ C, there is a unique
morphism A −→ 1.

66 For more technical details, the reader is referred to MacLane and Moerdijk (1992).
67 A category is said to be small if the families of objects and arrows that constitute it are proper

sets—i.e., not classes (MacLane and Moerdijk, 1992).
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• Dually, C also possesses a so-called initial object 0 which is ‘included’ in
each and every object of C; write: 0 −→ A, (∀A ∈ C).

• Finally, again dually to the fact that a topos C has (finite) products, it also
has (finite) coproducts.68

Due to its possessing (i) finite cartesian products, (ii) exponentials, and (iii) a
terminal object, an ET C is said to be a cartesian closed category, an equivalent
denomination (MacLane and Moerdijk, 1992). Let it be noted here that the primary
definitional axioms for an ET above are not minimal. Indeed, a small category
C need only possess finite limits, a subobject classifier �, as well as a so-called
power object PB = �A (for every object A ∈ C), in order to qualify as an ET
proper. Then, the rest of the properties outlined above can be derived from these
three basic ones (MacLane and Moerdijk, 1992).

APPENDIX B: THE DEFINITION OF AN ABSTRACT
GROTHENDIECK TOPOS

This appendix is used in 4.1 to show that DTf cq is a GT (MacLane and
Moerdijk, 1992). 4To recall briefly this formal and abstract mathematical struc-
ture,69 a small category C is said to be a GT if the following two conditions are
met:

• There is a base category B endowed with a so-called Grothendieck topol-
ogy on its arrows. B, thus topologized, is said to be a site; and

• Relative to B, C is a sheaf category—i.e., it is a category of sheaves over
the site B.

Let us elaborate a bit further on these two defining features of an abstract GT.

Grothendieck Topologies: Sites. There are two (equivalent) definitions of a
Grothendieck topology on a category B, which we borrow from MacLane and Mo-
erdijk (1992). Both use the notion of a sieve—in particular, of so-called covering
sieves. Prima facie, the use of covering sieves in defining a Grothendieck topology
is tailor-cut for DTf cq , which follows Sorkin’s tracks in Sorkin (1991), since we
saw in 3.1 that the notions of open coverings and sieve-topologies generated by
them play a central role in Sorkin’s fintoposet scheme.

68 For example, in the category Set of sets—the archetypical example of a topos that other topoi aim at
generalizing—the coproduct is the disjoint union (or direct sum) of sets and it is usually denoted by∐

(or
⊕

). On the other hand, in the category of (commutative) rings, or of K-algebras, or even of
sheaves of such algebraic objects, the coproduct is the usual tensor product ⊗K (while the product
remains the cartesian product, as in the universe Set of structureless sets).

69 Again, for more technical details, the reader can refer to MacLane and Moerdijk (1992).
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Thus, for an object A in a category B, a sieve S on A (write S(A)) is a set
of arrows (:morphisms) f : ∗ −→ A in B70 such that for all arrows g ∈ B with
dom(f ) = ran(g),71

f ∈ S(A) =⇒ f ◦ g ≡ fg ∈ S(A)

That is, S is a right ideal in B, when the latter is viewed as an associative arrow-
semigroup with respect to morphism-multiplication (:arrow concatenation).

Parenthetically, in the case of a topological space X,72 regarded as a poset
category PO(X) of its open subsets U ⊆ X and having as (monic) morphisms
between them open subset-inclusions (i.e., ∀ open U,V ⊆ X : V −→ U ⇔ V ⊆
U ), a sieve on U is a poset ideal (with ‘⊆’ the relevant partial order).

From the definition of a sieve above, it follows that if S(A) is a sieve on A in
B, and g : B −→ A any arrow with ran(g) = A, then the collection

g∗(S) = {B � h : ran(h) = B, gh ∈ S}
is also a sieve on B called the pull-back (sieve) of (the sieve) S along (the arrow)
g.

Having defined sieves, an abstract kind of topology J—the so-called
Grothendieck topology—can be defined on a general category B in terms of
them. Thus, J is an assignment to every object A in B of a family J (A) of sieves
on A, satisfying the following three properties:73

• Maximality: the maximal sieve m(A) = {f : ran(f ) = A} belongs to
J (A);

• Stability: if S ∈ J (A), then g∗(S) belongs to J (B) for any arrow g as
above;

• Transitivity: if S ∈ J (A) and T (A) is any sieve on A such that ∀g as
above, g∗(T ) ∈ J (B), then T ∈ J (A).

We say that S covers A (or that S is a covering sieve for A relative to J on B),
when it belongs to J (A). Also, we say that a sieve S covers the arrow g : B −→ A

above, if g∗(S) ∈ J (B).
With these two ‘covering’ definitions, and by identifying the objects of B

by their identity arrows iA : A −→ A (∀A ∈ B), the three defining properties of
a Grothendieck topology on B above can be recast in ‘arrow-form’ as follows
(MacLane and Moerdijk, 1992):

70 ∗ stands for an arbitrary object in B, which happens to be the domain of an arrow f ∈ S(A).
71 Where ‘dom’ and ‘ran’ denote the ‘domain’ and ‘range’ maps on the arrows of B, respectively.

That is, for B � h : B −→ C, dom(h) = B and ran(h) = C.
72 In which we are interested in 4.1 in connection with Sorkin’s ‘finitarities’ in Sorkin (1991) and ours

in DTf cq .
73 The following is the ‘object-form’ definition of a Grothendieck topology (MacLane and Moerdijk,

1992). Its equivalent ‘arrow-form’ follows shortly.
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• Maximality: if S is a sieve on A and f ∈ S, then S covers f ;
• Stability: if S covers an arrow f : B −→ A, it also covers g ◦ f ,

∀g : C −→ B; and,
• Transitivity: if S covers the arrow f above, and T is a sieve on A covering

all the arrows in S, then T covers f .

Finally, an instrumental notion (used in 4.1) is that of a basis BJ or generating
set of morphisms for a (covering sieve in a) Grothendieck topology J on a general
category B with pullbacks. Following (MacLane and Moerdijk, 1992), BJ is an
assignment to every object A ∈ B of a collection BJ (A) := {f : ran(f ) = A} of
arrows in B with range A, enjoying the following properties:

• Iso-Maximality: every isomorphism in B, with range A, belongs to
BJ (A);

• Stability: for a family F = {fi : Bi −→ A (i ∈ I )} in BJ (A), and any
morphism g : C −→ A, the family of pullbacks {f ∗

i : Bi ×A C −→ C}
along each fi belongs to BJ (C); and,

• Transitivity: for F as above, and for each i ∈ I one has another family of
arrows Gj = {gij : Cij −→ Bi (j ∈ Ii)} in BJ (Bi), the family F ◦ G :=
{fi ◦ gij : Cij −→ A (i ∈ I, j ∈ Ii)} also belongs to BJ (A).

A category B equipped with a Grothendieck topology J as defined above
is called a site. A site is usually symbolized by the pair (B, J ). If instead of J

one has prescribed a basis BJ on B, by slightly abusing terminology, the pair
(B,BJ ) can still be called a site—namely, it is the site generated by the covering
families of arrows in BJ (A) (∀A ∈ B).

In summa, a site represents a generalized topological space on which (ab-
stract) sheaves can be defined. Indeed, as noted in the main text, Grothendieck in-
vented sites in order to develop generalized sheaf cohomology theories thus be able
to tackle various problems in algebraic geometry (MacLane and Moerdijk, 1992).

Sheaves on a Site: GT. With a site (B, J ) in hand, an abstract GT is defined to be a
category C of sheaves over a base site. One writes symbolically, C := Shv(B, J ).
• It is a general fact that every GT is an ET (MacLane and Moerdijk, 1992).74
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